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Convexly Generated Spectral Max Functions

f : Cn×n → R ∪ {+∞} =: R

f(X) := max{f(λ) |λ ∈ C and det(λI −X) = 0},

where f : C→ R is closed, proper, convex.

Spectral abscissa: f(·) = Re(·) and we write f = α.

Spectral radius: f(·) = |·| and we write f = ρ.
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Example: Damped Oscillator: w′′ + µw′ + w = 0

u′ =

[
0 1
−1 −µ

]
u, u =

(
w
w′

)
A(µ) =

[
0 1
−1 0

]
+ µ

[
0 0
0 −1

]

Λ(A(µ)) =

{
−µ±

√
µ2 − 4

2
, α(A(µ)) =


−µ+
√
µ2−4

2 , |µ| > 2 ,

−µ/2 , |µ| ≤ 2 .
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Fundamentally Non-Lipschitzian

N(ε) =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

. . .

0 · · · · · · · · · · · · 0 1
ε · · · · · · · · · · · · 0 0


n×n

det[λI−N(ε)] = λn−ε =⇒ λk := (ε)1/ne2πki/n k = 0, . . . , n−1.



“Active eigenvalue” hypothesis
(H) For all active eigenvalues λ one of the following holds:

(A) f is quadratic, or f is C2 and positive definite
(B) rspan (∂f(λ)) = C

For φ : C→ R, define φ̃ : R2 → R by

φ̃ = φ ◦Θ,

where Θ : R2 → C is the R-linear transformation

Θ(x) = x1 + ix2.

Note Θ−1µ = Θ∗µ =

[
Reµ
Imµ

]
.

φ is R-differentiable if φ̃ is differentiable, and by the chain rule

∇φ(ζ) = Θ∇φ̃(Θ∗ζ).

Similarly,
∇2φ(ζ) = Θ∇2φ̃(Θ∗ζ)Θ∗.
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Key Result: B-Eaton (2016)

Suppose that X̃ ∈ Cn×n is such that hypothesis (H) holds at all
active eigenvalues λ of X̃ with ∂f(λ) 6= {0}.

Then f is subdifferentially regular at X̃ if and only if the active
eigenvalues of X̃ are nonderogatory.

Nonderogatory Matrices:

An eigenvalue if nonderogatory if it has only one eigenvector.

The set of nonderogatory matrices is an open dense set in Cn×n.

If matrices are stratified by Jordan structure, then within every
strata the submanifold of nonderogatory matrices has the same
co-dimension as the strata.

Spectral abscissa case, B-Overton (2001).
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Convexly Generated Polynomial Root Max Functions

The characteristic polynomial mapping Φn : Cn×n → Pn:

Φn(X)(λ) := det(λI −X).

Polynomial root max function generated by f is the mapping
f : Pn → R defined by

f(p) := max{f(λ) |λ ∈ C and p(λ) = 0}.

Key Result:
Suppose that p ∈ Pn is such that (H) holds at all active roots λ
of p with ∂f(λ) 6= {0}.
Then f is subdifferentially regular at p.

The abscissa case, B-Overton (2001).
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The Plan

Cn×n

G(0,·)
��

f // R

Sp̃
Fp̃

// Pñ
f

OO

p̃(λ) :=

m∏
j=1

(λ− λ̃j)nj

e(nj ,λ̃j)
(λ) := (λ− λ̃j)nj

G(0, X̃) := (0, e(n1,λ̃1), . . . , e(nm,λ̃m)) are the “active factors”

of the characteristic polynomial Φn(X̃).

The mapping G : C× Cn×n → Sp̃ takes a matrix X̃ ∈ Cn×n to
the “active factors” (of degree ñ ≤ n) associated with its
characteristic polynomial Φn(X̃).

p̃ has a local factorization based at its roots giving rise to a
factorization space Sp̃ and an associated diffeomorphism
Fp̃ : Sp̃ → Pñ.

Apply a nonsmooth chain rule.
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Inner Products

Lemma (Inner product construction)

Let L1 and L2 be finite dimensional vector spaces over F = C or
R, and suppose

L : L1 → L2 is an F-linear isomorphism.

If L2 has inner product 〈·, ·〉2, then the bilinear form
B : L1 × L1 → F given by

B(x, y) := 〈Lx,Ly〉2 ∀ x, y ∈ L1

is an inner product on L1.
The adjoint mappings L? : L2 → L1 and (L−1)? : L1 → L2 with
respect to the inner products 〈·, ·〉1 := B(x, y) and 〈·, ·〉2 satisfy

L? = L−1 and (L−1)? = L.

Real and complex inner products, 〈·, ·〉 and 〈·, ·〉c, resp.ly.
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Factorization Spaces

Given p̃ ∈Mñ (monic polynomials of degree at most n), write

p̃ :=
∏m
j=1e(nj ,λ̃j),

where λ̃1, . . . , λ̃m are the distinct roots of p̃, ordered
lexicographically with multiplicities n1, . . . , nm, and the
monomials e(`,λ̃j) are defined by

e(`,λ0)(λ) := (λ− λ0)`.

The factorization space Sp̃ for p̃ is given by

Sp̃ := C× Pn1−1 × Pn2−1 × · · · × Pnm−1,

where the component indexing for elements of Sp̃ starts at zero
so that the jth component is an element of Pnj−1.



Taylor Mappings Tp̃ : Sp̃ → Cñ+1

For each λ0 ∈ C, the scalar Taylor maps τ(k,λ0) : Pñ → C are

τ(k,λ0)(q) := q(k)(λ0)/k! , for k = 0, 1, 2, . . . , ñ,

where q(`) is the `th derivative of q.

Define the C-linear isomorphism Tp̃ : Sp̃ → Cñ+1 by

Tp̃(u) := [µ0, (τ(n1−1,λ̃1)(u1), . . . , τ(0,λ̃1)(u1)), . . . ,

(τ(nm−1,λ̃m)(um), . . . , τ(0,λ̃m)(um))]T .



Tp̃ induces and inner product on Sp̃

By the inner product construction Lemma we have

〈u,w〉cSp̃ := 〈Tp̃(u), Tp̃(w)〉cCñ+1 , for all u,w ∈ Sp̃

is an inner product on Sp̃ with

T ?p̃ = T −1
p̃

with respect to the inner products 〈·, ·〉cSp̃ and 〈·, ·〉cCñ+1 .

Here 〈z, w〉Cñ+1 := Re 〈z, w〉cCñ+1 with

〈z, w〉cCñ+1 =
〈
(z0, . . . , zñ)T , (w0, . . . , wñ)T

〉c
Cñ+1 :=

ñ∑
j=0

z̄jwj .



The Diffeomorphism Fp̃ : Sp̃ → Pñ
Recall

p̃ :=
∏m
j=1e(nj ,λ̃j)

and

Sp̃ := C× Pn1−1 × Pn2−1 × · · · × Pnm−1.

Define

Fp̃(q0, q1, q2, . . . , qm) := (1 + q0)

m∏
j=1

(e(nj ,λ̃j) + qj).

Then Fp̃ is a local diffeomorphism over C with Fp̃(0) = p̃ and

F ′p̃(0)(ω0, w1, w2, . . . , wm) = ω0p̃+

m∑
j=1

rjwj ,

where rj := p̃/e(nj ,λ̃j).



F ′p̃(0)−1 induces and inner product on Pñ

Since F ′p̃(0) : Sp̃ → Pñ is a C-linear isomorphism, the inner

product construction Lemma tells us that F ′p̃(0)−1 induces an

inner product on Pñ through the inner product 〈·, ·〉cSp̃ by setting

〈z, v〉c(Pñ,p̃) :=
〈
F ′p̃(0)−1z, F ′p̃(0)−1v

〉c
Sp̃

=
〈
Tp̃(F ′p̃(0)−1z), Tp̃(F ′p̃(0)−1v)

〉c
Cñ+1 .

With respect to these inner products, we have

(F ′p̃(0)−1)? = F ′p̃(0), and (Tp̃ ◦ F ′p̃(0)−1)? = F ′p̃(0) ◦ T −1
p̃ .

Every p̃ ∈Mñ induces and inner product on Pñ in this way.



The subdifferential of f (B-Eaton (2012))
Recall that f : Pn → R is given by

f(p) := max{f(λ) |λ ∈ C and p(λ) = 0}.

Let p̃ ∈ Pñ ∩ dom (f) have degree ñ with decomposition

p̃ :=
∏m
j=1e(nj ,λ̃j),

and set Ξp̃ := {λ1, . . . , λm} and

Af (p̃) := {λj ∈ Ξp | f(λj) = f(p)} .

Assume that every active root λj ∈ Af (p̃) satisfies the active
root hypotheses with ∂f(λ) 6= {0}. Then, with respect to 〈·, ·〉cSp̃ ,

∂f(p̃) = F ′p̃(0) ◦ T −1
p̃ (Dp̃) ⊂ Pñ,

where

Dp̃ := conv ({0} ×
m
X
j=1

Γ(nj , λ̃j)) ⊂ Cñ+1.



The sets Γ(nj, λ̃j) (B-Lewis-Overton (2005))

Γ(nj , λ̃j) :=

{
(−∇f(λ̃j)/nj)×D(nj , λ̃j)× Cnj−2 if f C2 at λ̃j ,

(−∂f(λ̃j)/nj)×Q(λ̃j)× Cnj−2 if f nonsmooth at λ̃j
⊂ Cnj

D(nj , λ̃j) :={θ | 〈θ, (∇f(λ̃j))
2〉C≤〈i∇f(λ̃j),∇2f(λ̃j)(i∇f(λ̃j))〉C/nj}

Q(λ̃j) := −cone (∂f(λ̃j)
2) + i(rspan (∂f(λ̃j)

2)),

where ∂f(λ̃j)
2 := {g2|g ∈ ∂f(λ̃j)}.



Jordan Decomposition
Let

Ξ̃ := {λ̃1, . . . , λ̃m}

be a subset of the distinct eigenvalues of X̃ ∈ Cn×n. The
Jordan structure of X̃ relative to these eigenvalues is given by

J := P̃ X̃P̃−1 =Diag (B̃, J1, . . . , Jm),

where
Jj :=Diag (J

(1)
j , . . . , J

(qj)
j )

and J
(k)
j is an mjk ×mjk Jordan block

J
(k)
j := λ̃jImjk

+Njk, k = 1, . . . , qj , j = 1, . . . ,m,

where Njk ∈ Cmjk×mjk is the nilpotent matrix given by ones on
the superdiagonal and zeros elsewhere, and Imjk

∈ Cmjk×mjk is
the identity matrix. With this notation, qj is the geometric
multiplicity of the eigenvalue λ̃j .



Arnold Form: Nonderogatory Case
There exists a neighborhood Ω of X̃ ∈ Cn×n and smooth maps
P : Ω→ Cn×n, B : Ω→ Cn0×n0 and, for j ∈ {1, . . . ,m} and
s ∈ {0, 1, . . . , nj − 1}, λjs : Ω→ C such that

P (X)XP (X)−1 =Diag (B(X), 0, . . . , 0) +
∑m

j=1 J̌j(X) ∈ Cn×n,

λjs(X̃) = 0, s = 0, 1, . . . , nj − 1,

P (X̃) = P̃ , B(X̃) = B̃, and

P (X̃)X̃P (X̃)−1 = Diag (B(X̃), J1, . . . , Jm),

where

J̌j(X) := λ̃jJj0 + Jj1 +
∑nj−1

s=0 λjs(X)J∗js,

Jjs := Diag (0, . . . , 0, N s
j , 0, . . . , 0), and

Jj0 := Diag (0, . . . , 0, Inj , 0, . . . , 0),

with N s
j and Inj in the λ̃j diagonal block. Finally, the functions

λjs are uniquely defined on Ω, though the maps P and B are
not unique.



Observation on λjs(X̃)

Arnold form illustrates a fundamental difference between the
symmetric and nonsymmetric cases.

In the symmetric case, the matrices are unitarily diagonalizable
so there are no nilpotent matrices Nj and the mappings λjs
reduce to the eigenvalue mapping λj .

In this case, a seminal result due to Adrian Lewis shows that
the variational properties depend only on the eigenvalues (up to
the orbit).

On the other hand, in the nonsymmetric case they depend on
the entire family of functions λjs.



∇λjs(X̃) (B-Lewis-Overton (2001))

The gradients of the functions λjs : Cn×n → C are given by

∇λjs(X̃) = (nj − s)−1P̃ ∗J∗jsP̃
−∗,

with respect to the inner product 〈·, ·〉cCn×n .

Jjs := Diag (0, . . . , 0, N s
j , 0, . . . , 0)

Nj :=



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

. . .

0 · · · · · · · · · · · · 0 1
0 · · · · · · · · · · · · 0 0


nj×nj



Derivatives of Characteristic Factors

Φn(X̃) = Φñ(Ĵ(X̃))Φn0(B(X̃)) = p̃Φn0(B(X̃))

Φñ(Ĵ(X̃)) =

m∏
j=1

Φnj (Ĵj(X))

Ĵj(X) = Ĵj(X) := λ̃jInj + Jj +
∑nj−1

s=0 λjs(X)(Jsj )∗

Theorem (B-Eaton (2016))

Φnj (Ĵj)(X) = e(nj ,λ̃j) −
nj−1∑
s=0

(nj−s)λjs(X)e(nj−s−1,λ̃j)

+ o(λj0(X), . . . , λj(nj−1)(X))

and so(
(Φnj (Ĵj))

′(X)
)?

= −
∑nj−1

s=0 P̃ ∗J∗jsP̃
−∗ τ(nj−s−1,λ̃j).
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The mapping G : C× Ω→ Sp̃

G(ζ,X) := (ζ, g1(X), . . . , gm(X)),

where
gj(X) := Φnj (Ĵj)(X)− e(nj ,λ̃j).

Then
f(X) = (f ◦ Fp̃ ◦G)(ζ,X) (∀ ζ 6= 0).

We have
(G′(ζ, X̃))? = R ◦ Tp̃,

where R : Cñ+1 → C× Cn×n be the C-linear transformation

R(v) :=
(
v0, −

∑m
j=1

∑nj−1
s=0 vjsP̃

∗J∗jsP̃
−∗
)
,

for all v := (v0, v10, . . . , v1(n1−1), . . . , vm0, . . . , vm(nm−1)) ∈ Cñ+1.



The mapping G : C× Ω→ Sp̃

G(ζ,X) := (ζ, g1(X), . . . , gm(X)),

where
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f(X) = (f ◦ Fp̃ ◦G)(ζ,X)

Cn×n

G(0,·)
��

f // R

Sp̃
Fp̃

// Pñ
f

OO

Define
f̂(ζ,X) := (f ◦ Fp̃ ◦G)(ζ,X).

Then, with respect to the Frobenius inner product on Cn×n,

∂ f̂(ζ, X̃) = ∂ f̂(0, X̃)

= G′(0, X̃)? ◦ (F ′p̃(0))? ◦ ∂f(Fp̃(G(0, X̃)))

= [R ◦ Tp̃ ◦ (F ′p̃(0))−1] ◦ F ′p̃(0) ◦ T −1
p̃ (Dp̃)

= R(Dp̃).



Ideas behind computing ∂f

The polynomial abscissa: a(p) := max {Re(λ) | p(λ) = 0}.
We have (v(λ), η) ∈ Tepi(a)(λ

n, 0), where

v(λ) = b0λ
n + b1λ

n−1 + b2λ
n−2 + · · ·+ bn,

if and only if

−Re b1
n

≤ η, (1)

Re b2 ≥ 0, (2)

Im b2 = 0, and (3)

bk = 0, for k = 3, . . . , n. (4)



The Gauss-Lukas Theorem (1830)

All critical points of a non-constant polynomial lie in the convex
hull of the set of roots of the polynomial.

That is,
R(p′) ⊂ co (R(p))

where
R(q) = {λ | q(λ) = 0} .

Suppose deg p = n and (v(λ), η) ∈ Tepi(a)(p, µ).
Then, by Gauss-Lucas,

R(p(n−1)) ⊂ convR(p(n−2)) ⊂ . . . convR(p) ⊂ {ζ | 〈1, ζ〉 ≤ µ} ,

which implies

a(p(n−1)) ≤ a(p(n−2)) ≤ · · · ≤ a(p) ≤ µ.
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Consequences for Tepi (a) (λn, 0)
Suppose (v, η) ∈ Tepi (a) (λn, 0), that is there exists

tj ↓ 0 and {(pj , µj)} ∈ epi(a)
such that

t−1
j ((pj , µj)− (λn, 0))→ (v, η).

Then there exists

{(aj0, a
j
1, . . . , a

j
n)} ∈ Cn+1

such that

pj(λ) =

n∑
k=0

ajkλ
n−k

with
t−1
j µj → η, t−1

j (aj0 − 1)→ b0,

t−1
j ajk → bk, k = 1, . . . , n,

where

v(λ) =

n∑
k=0

bkλ
n−k.



Apply Gauss-Lukas Theorem

R(p
(n−1)
j ) ⊂ convR(p

(n−2)
j ) ⊂ . . . convR(pj) ⊂ {ζ | 〈1, ζ〉 ≤ µ} ,

for each j = 1, 2, 3, . . . .
Thus, for j = 1, 2, 3, . . . and ` = 1, 2, . . . , n− 1

µj ≥ max
{

Re ζ
∣∣∣ p(`)
j (ζ) = 0

}
.

where pj(λ) = aj0λ
n + aj1λ

n−1 + aj2λ
n−2 + . . . + ajn.

For ` = n− 1, this yields

µj ≥ max
{

Re ζ
∣∣∣n!ak0λ + (n− 1)!aj1 = 0

}
= − 1

n
Re

aj1
ak0
.

Hence
µj
tj
≥ − 1

n
Re

aj1
tjak0

.

Taking the limit in j yields

η ≥ −Re b1
n

.


