AMATH/MATH 516 FIFTH HOMEWORK SET

(*)

(1) Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth and $S \subset \mathbb{R}^n$ be a subspace of \mathbb{R}^n . Given $x^0 \in \mathbb{R}^n$, show that if $\bar{x} \in \mathbb{R}^n$ is a local solution to min $\{f(x) \mid x \in x^0 + S\}$, then

$$\nabla f(x) \perp S$$
.

(2) Let $Q \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$, with Q symmetric and positive definite, and consider the optimization problem min $\{\frac{1}{2}x^TQx + c^Tx \mid Ax \leq b\}$ and its relaxation

$$\mathcal{R} \qquad \min\left\{\frac{1}{2}x^TQx + c^Tx - t\sum_{i=1}^n \ln(y_i) \mid Ax + y = b\right\}$$

where t > 0 and we define $\ln(\mu) = -\infty$ if $\mu \le 0$.

(a) Use the optimality condition (*) to show that the optimality conditions for \mathcal{R} can be written as

(**)
$$\exists y, w \in \mathbb{R}^m_+ \text{ s.t. } Ax + y = b, \ Qx + A^T w + c = 0 \text{ and } \operatorname{diag}(w) \operatorname{diag}(y) \mathbf{1} = t\mathbf{1} ,$$

where **1** is always the vector of all ones of the appropriate dimension.

- (b) Show that if (x^k, y^k, w^k, t_k) is a sequence of points satisfying (**) with $t_k \downarrow 0$, then every cluster point of this sequence $(\bar{x}, \bar{y}, \bar{w}, 0)$ is such that \bar{x} solves min $\{\frac{1}{2}x^TQx + c^Tx \mid Ax \leq b\}$.
- (3) Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, and let $c \in \mathbb{R}^n$. Consider the optimization problem

$$\min_{0 \le x} \frac{1}{2} x^T Q x + c^T x$$

- (a) What is the Lagrangian function for this problem?
- (b) Show that the Lagrangian dual is the problem

$$\max_{y \le c} -\frac{1}{2} y^T Q^{-1} y = -\min_{y \le c} \frac{1}{2} y^T Q^{-1} y .$$

- (c) Show that if $\bar{x}, \bar{y} \in \mathbb{R}^n$ satisfy $\bar{y} = -Q\bar{x}$, then \bar{x} solves the primal problem if and only if \bar{y} solves the dual problem, and the optimal values in the primal and dual coincide.
- (4) Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Consider the optimization problem

P minimize
$$\frac{1}{2}x^TQx + c^Tx$$

subject to $||x||_{\infty} \le 1$.

(a) Show that this problem is equivalent to the problem

$$\hat{\mathcal{P}} \begin{array}{l} \text{minimize} & \frac{1}{2}x^TQx + c^Tx \\ \text{subject to} & -e \le x \le e \end{array},$$

where e is the vector of all ones.

- (b) What is the Lagrangian for $\hat{\mathcal{P}}$?
- (c) Show that the Lagrangian dual for $\hat{\mathcal{P}}$ is the problem

$$\mathcal{D} \qquad \max -\frac{1}{2}(y-c)^T Q^{-1}(y-c) - \|y\|_1 \qquad = \qquad -\min \frac{1}{2}(y-c)^T Q^{-1}(y-c) + \|y\|_1 \ .$$

This is also the Lagrangian dual for \mathcal{P} .

- (d) Show that if $\bar{x}, \bar{y} \in \mathbb{R}^n$ satisfy $\bar{y} = Q\bar{x} + c$, then \bar{x} solves \mathcal{P} if and only if \bar{y} solves \mathcal{D} , and the optimal values in \mathcal{P} and \mathcal{D} coincide.
- (5) Let $K \subset \mathbb{R}^m$ be a non-empty closed convex cone.
 - (a) If $K = \mathbb{R}^s_- \times \{0\}^{m-s}$, show that for every $x \in K$, $N(x \mid K) = \{y \in \mathbb{R}^m \mid 0 \le y_i, y_i x_i = 0, i = 1, \dots, s\}$.
 - (b) Show that, in general, $N(x | K) = \{y \in K^{\circ} | \langle x, y \rangle = 0\}.$
 - (c) Show that dist $(x | K) = [\delta^*(\cdot | \mathbb{B}^\circ) \Box \delta(\cdot | K)](x)$, that is, dist (x | K) is the infimal convolution of $\delta^*(\cdot | \mathbb{B}^\circ)$ and $\delta(\cdot | K)$, where \mathbb{B} is the unit ball of the norm defining dist $(x | K) := \inf \{ ||x y|| | y \in K \}$.
 - (d) Given $f_1, f_2 \in \Gamma(\mathbb{R}^n)$, set $f = f_1 \Box f_2$. Show that $f^* = f_1^* + f_2^*$, where

$$[f_1 \Box f_2](x) := \inf \{f_1(x_1) + f_2(x_2) \mid x_1 + x_2 = x\}.$$

- (e) Use the previous two parts of this problem to show that $\operatorname{dist}(x \mid K) = \delta^*(x \mid B^\circ \cap K^\circ)$ by using the fact that $f = f^{**}$ for all $f \in \Gamma(\mathbb{R}^n)$.
- (f) Given $x \in K$, show that $\partial \text{dist}(x \mid K) = B^{\circ} \cap N(x \mid K)$.