AMATH/MATH 516

FIFTH HOMEWORK SET

(1) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be smooth and $S \subset \mathbb{R}^{n}$ be a subspace of \mathbb{R}^{n}. Given $x^{0} \in \mathbb{R}^{n}$, show that if $\bar{x} \in \mathbb{R}^{n}$ is a local solution to $\min \left\{f(x) \mid x \in x^{0}+S\right\}$, then

$$
\begin{equation*}
\nabla f(x) \perp S \tag{*}
\end{equation*}
$$

(2) Let $Q \in \mathbb{R}^{n \times n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$, with Q symmetric and positive definite, and consider the optimization problem $\min \left\{\left.\frac{1}{2} x^{T} Q x+c^{T} x \right\rvert\, A x \leq b\right\}$ and its relaxation

$$
\mathcal{R} \quad \min \left\{\left.\frac{1}{2} x^{T} Q x+c^{T} x-t \sum_{i=1}^{n} \ln \left(y_{i}\right) \right\rvert\, A x+y=b\right\},
$$

where $t>0$ and we define $\ln (\mu)=-\infty$ if $\mu \leq 0$.
(a) Use the optimality condition $(*)$ to show that the optimality conditions for \mathcal{R} can be written as

$$
\exists y, w \in \mathbb{R}_{+}^{m} \text { s.t. } A x+y=b, Q x+A^{T} w+c=0 \text { and } \operatorname{diag}(w) \operatorname{diag}(y) \mathbf{1}=t \mathbf{1}
$$

where $\mathbf{1}$ is always the vector of all ones of the appropriate dimension.
(b) Show that if $\left(x^{k}, y^{k}, w^{k}, t_{k}\right)$ is a sequence of points satisfying $(* *)$ with $t_{k} \downarrow 0$, then every cluster point of this sequence $(\bar{x}, \bar{y}, \bar{w}, 0)$ is such that \bar{x} solves $\min \left\{\left.\frac{1}{2} x^{T} Q x+c^{T} x \right\rvert\, A x \leq b\right\}$.
(3) Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, and let $c \in \mathbb{R}^{n}$. Consider the optimization problem

$$
\min _{0 \leq x} \frac{1}{2} x^{T} Q x+c^{T} x
$$

(a) What is the Lagrangian function for this problem?
(b) Show that the Lagrangian dual is the problem

$$
\max _{y \leq c}-\frac{1}{2} y^{T} Q^{-1} y \quad=\quad-\min _{y \leq c} \frac{1}{2} y^{T} Q^{-1} y
$$

(c) Show that if $\bar{x}, \bar{y} \in \mathbb{R}^{n}$ satisfy $\bar{y}=-Q \bar{x}$, then \bar{x} solves the primal problem if and only if \bar{y} solves the dual problem, and the optimal values in the primal and dual coincide.
(4) Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Consider the optimization problem

$$
\begin{array}{lll}
\mathcal{P} & \text { minimize } & \frac{1}{2} x^{T} Q x+c^{T} x \\
& \text { subject to } & \|x\|_{\infty} \leq 1
\end{array}
$$

(a) Show that this problem is equivalent to the problem
where e is the vector of all ones.
(b) What is the Lagrangian for $\hat{\mathcal{P}}$?
(c) Show that the Lagrangian dual for $\hat{\mathcal{P}}$ is the problem

$$
\mathcal{D} \quad \max -\frac{1}{2}(y-c)^{T} Q^{-1}(y-c)-\|y\|_{1} \quad=\quad-\min \frac{1}{2}(y-c)^{T} Q^{-1}(y-c)+\|y\|_{1}
$$

This is also the Lagrangian dual for \mathcal{P}.
(d) Show that if $\bar{x}, \bar{y} \in \mathbb{R}^{n}$ satisfy $\bar{y}=Q \bar{x}+c$, then \bar{x} solves \mathcal{P} if and only if \bar{y} solves \mathcal{D}, and the optimal values in \mathcal{P} and \mathcal{D} coincide.
(5) Let $K \subset \mathbb{R}^{m}$ be a non-empty closed convex cone.
(a) If $K=\mathbb{R}_{-}^{s} \times\{0\}^{m-s}$, show that for every $x \in K, N(x \mid K)=\left\{y \in \mathbb{R}^{m} \mid 0 \leq y_{i}, y_{i} x_{i}=0, i=1, \ldots, s\right\}$.
(b) Show that, in general, $N(x \mid K)=\left\{y \in K^{\circ} \mid\langle x, y\rangle=0\right\}$.
(c) Show that dist $(x \mid K)=\left[\delta^{*}\left(\cdot \mid \mathbb{B}^{\circ}\right) \square \delta(\cdot \mid K)\right](x)$, that is, dist $(x \mid K)$ is the infimal convolution of $\delta^{*}\left(\cdot \mid \mathbb{B}^{\circ}\right)$ and $\delta(\cdot \mid K)$, where \mathbb{B} is the unit ball of the norm defining dist $(x \mid K):=\inf \{\|x-y\| \mid y \in K\}$.
(d) Given $f_{1}, f_{2} \in \Gamma\left(\mathbb{R}^{n}\right)$, set $f=f_{1} \square f_{2}$. Show that $f^{*}=f_{1}^{*}+f_{2}^{*}$, where

$$
\left[f_{1} \square f_{2}\right](x):=\inf \left\{f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \mid x_{1}+x_{2}=x\right\}
$$

(e) Use the previous two parts of this problem to show that dist $(x \mid K)=\delta^{*}\left(x \mid \mathrm{B}^{\circ} \cap K^{\circ}\right)$ by using the fact that $f=f^{* *}$ for all $f \in \Gamma\left(\mathbb{R}^{n}\right)$.
(f) Given $x \in K$, show that $\partial \operatorname{dist}(x \mid K)=\mathrm{B}^{\circ} \cap N(x \mid K)$.

