Math 408 Section A WINTER 2004
LINEAR ALGEBRA REVIEW

In this course the notion of linearity plays a central role. Many of the theoretical aspects of this
course are based on properties of systems of linear equations and inequalities in IR". For this reason
the course prerequisite MATH 308 should be taken very seriously. This guide has been prepared
to facilitate your review of the relevant material on linear systems of equations. Reviewing this
material will prepare you for the quizzes.

Basic Review:
You should be able to answer the following questions:

Answer the following 6 questions for each of the four cases n = 1, n = 2, n = 3, and n €
{1,2,3,4,5,6,...} beginning with the case n = 1.

1. Why is IR" called a vector space?

2. What is the dot product (or inner product) on IR™?

3. What is the angle between any two vectors in IR™? (For this one simply applies the definition
a’b = ||a||||b]| cos 8.)

4. When are two vectors in IR" said to be orthogonal?
5. Describe all linear mappings from R" to IR.

6. What is the data structure that one usually associates with a linear transformation from IR"
to IR™?

You should also be able to answer the following more specific questions:

7. Given any two points in IR? determine (a) an equation for the line passing through these
points, and (b) a vector normal to the line determined by these two points.

8. Given any three non—collinear points in IR* determine (a) an equation for the plane passing
through these three points, and (b) a vector normal to this plane.

9. Let a = (ay,as,...,a,)" € R" and o € IR. For n =1,2,3 and n > 3 describe the set
{reR" : a"z=qa}
when (a) « =0, and (b) o # 0.

10. Let ai. = (ai,ai0,...,01,)7 € R™, ay. = (ao1,a09,...,a,)" € IR", and oy, asinlR. For
n=1,2,3 and n > 3 describe the set

{zeR" : a2 =0y, a1 = ay}.
11. Fori=1,2,3,...,m, let a;. = (a;1, o, - - -, ai)" inIR™ and o; € RR.
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(a) For n =1,2,3 and n > 3 with m = n describe the set
S={reR" : a,"vr =04, i=1,2,...,m}.

(b) How does this description change when (a) m < n, (b) m > n?
(c) Can you express the set S in matrix notation?

(d) What does it mean to say that the underlying matrix has (a) full column rank, (b) full
row rank, (c) full rank?

12. What are the three elementary row operations, i.e. the three operations associated with row
reduction?

13. Given an n x n real matrix A, what does it mean to say that A is invertible (or, equivalently,
non—singular)?

14. Let A be an m x n real matrix, B be a k x n real matrix, and let « € IR™ and b € IR*. We
say that the two systems of equations

Arx =q and Bz =b

are equivalent if they have identical solution sets.

(a) Show that if any one of the three elementary row operations is applied to the system
Az = a, then one obtains an equivalent linear system.

(b) If C is a non—singular m x m real matrix, show that the system Az = a is equivalent to
the system C Az = Ca.

(c) Is it possible for the systems Az = a and Bz = b to be equivalent when n # m? If it is
possible, then provide an example to illustrate this possi bility.

Advanced Review:

These notes elaborate on a number of important topics studied in Math 308 (Introduction to Linear
Algebra). One of the goals of these notes is to discuss the ideas in the course without getting too
bogged down in the notational details. However, at certain points this will become unavoidable.
Hopefully, this approach will help you see the big picture a little better. But be forewarned, these
notes are not an easy read! Reading these notes is an exercise in itself since they require a familiarity
with many of the terms and ideas defined throughout the course. The notes exercise your knowledge
of this material and are intended to solidify this knowledge.

Subspaces:

Recall that a subset W of IR" is a subspace if and only if it satisfies the following three
conditions:

1. The origin is an element of W.
2. The set W is closed with respect to addition, i.e. ifu € W and v € W, then u+v € W.



3. The set W is closed with respect to scalar multiplication, i.e. if « € IR and u € W, then
au e W.

For example, by using this fact it is easily shown that given any set S in IR™ we have that the
set
St={v:w'v=0foralweS}

is a subspace. If S is itself a subspace, then S is called the subspace orthogonal (or per-
pendicular) to the subspace S. Moreover, in this case we have S = (S1)* (more generally,
(S1)L = Span (S)). If S is a subspace, it can be shown that

n = dim (S) + dim (S*) . (1)

Every subspace has what I will call internal and external representations.

An internal representation is any representation of the subspace as a linear span of a finite set
of vectors. The representation is said to be internal since the spanning vectors lie within the
subspace. If the set of spanning vectors happens to be linearly independent, then it is called
a basis of the subspace. It is known that every basis of a subspace has the same number of
vectors in it. This number is called the dimension of the subspace.

Internal representations of a subspace can be interpreted with the aid of our notion of matrix—
vector multiplication. Recall that matrix—vector multiplication can be viewed as taking a
linear combination of the columns of the matrix. Thus, if a subspace is known to be the linear
span of a finite collection of vectors, then this subspace is the same as the range of the matrix
formed by taking the columns of the matrix to be the vectors that span the subspace.

An external representation of a subspace is any representation of the subspace as the inter-
section of a finite number of subspaces of the form {z € R" : vI'z = 0} for some nonzero
v; in IR™ for ¢ = 1,2,...,k. The representation is said to be external since the vectors v;
clearly cannot belong to the subspace. Another way to view an external representation of the
subspace is that the vectors {vy,vs, ..., v} form a spanning set for the subspace orthogonal
(or perpendicular) to the subspace we are interested in. If the dimension of the subspace is

p, then the dimension of the orthogonal subspace is n — p. Thus, in particular, £ > n — p.

External representations of a subspace can also be interpreted with the aid of our notion of
matrix—vector multiplication. Recall that matrix—vector multiplication can also be interpreted
as taking the dot product with each row of the matrix. Thus, a vector is in the null space of
a matrix if it is orthogonal to every row of that matrix. Consequently, a subspace externally
represented by the vectors {vy,vs,..., v} is the same as the null space of the matrix formed
by letting its rows be the vectors v; in IR™ for 1 =1,2,...,k.

It is important to remember that every subspace has both internal and external representations
(indeed, infinitely many of them). Equivalently, every subspace can be represented either as
the range of some matrix or as the null space of some matrix (indeed, there are infinitely
many such matrices). Some of the computational techniques we have learned in this course
deal with passing between such representations and obtaining minimal representations, that
is internal and external representations having the fewest number of elements.



Subspaces Associated with Matrices:

We have seen that matrices and subspaces are intimately connected to each other. In this
regard, every matrix has associated with it four fundamental subspaces; its range and null
space and the range and null space of its transpose. Due to the interpretations of these
subspaces given above, these subspaces have significant connections to each other. Given a
matrix A € IR™*" we have

Null(A) = (Ran(A"))* (2)
Null (A") = (Ran(A))* (3)
dim (Ran (4)) = dim (Ran (AT)) (4)
n = dim(Ran (A)) + dim (Null (4)) (5)

(

m = dim (Ran (AT)) + dim (Null (47)) . 6)

The dimension of the range of a matrix is called the rank of the matrix (denoted rank (A))
and the dimension of the null space of a matrix is called the nullity of the matrix (denoted
nullity (A4)). Thus, from equation (4) , we have rank (A) = rank (AT). However, equations (5)
and (6) indicate that nullity (4) = nullity (AT) if and only if m = n. Thus, in the non-square
case, it will never be the case that nullity (A) equals nullity (AT). It should also be noted that
equations (2) and (3) imply that equations (5) and (6) are special cases of equation (1).

Echelon Form:

The key computational tool that we have employed in this class is Gaussian elimination.
Gaussian elimination was introduced for the purpose of transforming a matrix into echelon
form. That is, Gaussian elimination was introduced as a tool for transforming a matrix into
another matrix having the property that the first nonzero entry in the (i + 1)st row lies to the
right of the first nonzero entry in the sth row. Let us review this process in the light of our
knowledge of subspaces.

Recall that in Gaussian elimination one employs the three elementary row operations to put
a matrix in upper triangular form (or echelon form). These operations can be viewed as
operations on the vectors that form the rows of the matrix. That is, they are operations in
the row space of the matrix (recall that the row space of a matrix is the linear span of the
rows of the matrix, or equivalently, it is the subspace formed by taking all possible linear
combinations of the rows of the matrix, or equivalently, it is the range of the transpose of the
matrix). In class it was shown that the three elementary row operations do not change the
row space of the matrix. Let us review this fact by considering the row operations one at a
time.

Row Interchange: In this operation we simply change the order in which we write the rows.
Clearly this does not change the row space of the matrix.

Multiply a Row by a Nonzero Scalar: Again the row space remains unchanged since the row
space contains all linear combinations of the rows and scalar multiplication is simply a
special case of this.

Replace a Row by the Sum of Itself and a Multiple of Another Row: This just represents a
linear combination of two rows. Thus the new row remains in the row space.
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The essential feature of the three elementary row operations is that the new collection of rows
have the same linear span as the rows you started with. In order to see this we just need
to show that the only row that was changed can be obtained as some linear combination of
the new rows. This is obvious for the first two elementary row operations. For the third
it is equally obvious since the old row is simply the new row minus what was added to it,
namely a scalar multiple of one of the unchanged rows. Thus, the elementary row operations
do not change the row space of the matrix. In particular, we have that two matrices are row
equivalent if and only if they have the same row space.

Now to say that we have put a matrix into echelon form implies that we have made as many
rows of the matrix zero as we possibly can. Thus, none of the remaining nonzero rows can
be represented as a linear combination of the other remaining nonzero rows. That is, the
remaining nonzero rows are linearly independent and have the same span as the row space of
the original matrix, or equivalently, the nonzero rows form a basis for the row space of the
original matrix. This is a remarkable fact! Our primary tool for solving equations is also an
efficient way to obtain a basis for a subspace from a spanning set for that subspace!

Echelon form is indeed a very powerful tool. We have used it over and over again in this course
to solve a variety of problems. Let us now take a moment to review the types of problems we
have used it to solve.

Equation Solving: Given a system of linear equations, Az = b, where A € IR™*" and b € IR™,
we can characterize the solution set to this system by reducing the associated augmented
matrix [A|b] to echelon form.

Passing between internal and external representations of a subspace:

Internal to external: This is the same as expressing the range of one matrix as the null
space of another. Let A be the matrix in question and assume y is in the range of
A. Since y € Ran (A), the system Az = y is consistent. We then formally solve this
system by reducing the augmented matrix [A|y] to echelon form. Once in echelon
form some of the rows will be all zero except for the right-hand side which will be a
algebraic expression in the components of y. The consistence of the system implies
that each of these expressions must be zero. By writing these expressions in matrix
form and setting them equal to zero we get a matrix equation of the form By = 0
for some matrix B. That is, we have expressed the range of A as the null space of
B.

External to internal: This is the same as expressing the null space of one matrix as the
range of another. Again, letting A be the matrix in question, we reduce A to reduced
echelon form. Typically, this process terminates with a row equivalent matrix having
the following block structure:

I B
=13 7]
Then the columns of the matrix D = _IB ] form a basis for the null space of A.

In order to see this recall that the null space of A is the subspace orthogonal to



the row space of A, that is, Ran (A”) = Null (A)*. Since C is row equivalent to A,
the null space of A is the subspace orthogonal to the row space of C'. Next observe
that CD = 0, that is, the columns of D are orthogonal to the rows of C'. Since the
dimension counts work out, the columns of D must be a basis for the null space of

C.

Computing a basis for the span of a finite collection of vectors: This has already been dis-
cussed above as one of the primary consequences of the echelon form. Just write the
vectors as the row vectors of a matrix and then reduce this matrix to echelon form. The
rows of the reduced matrix will be the desired basis.

Computing the rank and nullity of a matrix: In this regard, recall the following fundamental
theorem:

THEOREM (The Fundamental Theorem on Rank and Nullity)
Let A be an m x n real matriz and suppose that A is row equivalent to the matriz B
in echelon form. If r is the number of non—zero rows in B, then r is the rank of A
and n — r is the nullity of A. Thus, in particular, we have

rank (A) + nullity (A) =n .

Computing bases for the four fundamental subspaces associated with a matrix:

Let A € IR™ ™. An efficient procedure for computing bases for the four fundamental
subspaces associated with A begins by reducing the augmented system

[A 1] (7)

to echelon form. Recall that this is equivalent to multiplying the augmented system on
the left by some nonsingular matrix M, yielding

[MA[M] . (8)

Decomposing this augmented matrix conformally with respect to the nonzero and zero
rows of MA yields the block matrix

T,

0

where the matrix 77 is in echelon form and has no zero rows and M = [

2] )

1,
T3
the rows of the matrix 73 form a basis for Ran (A”) and the rows of the matrix T3 form
a basis for Null (AT). If no row interchanges were required for the reduction to echelon
form, then the matrix 73 has the form

] . Then,

T3 = [Tz 1] . (10)

If this is the case, then the columns of the matrix
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form a basis for Ran (A). Finally, to get a basis for Null (A), we again use Gaussian
elimination to transform the matrix 77 to reduced echelon form, yielding a matrix which

typically has block structure
[I Tyo] -

=T
I
form a basis for Null (A).
We now illustrate this process on the matrix

In this case, the columns of the matrix

1 2 1

13 0

-1 1 —4

3 5 4

In this case, the augmented system (7) has the form

12 1|1 000
13 00100
-11 —-4/0 010
35 410001

After reduction to echelon form, we obtain the matrix

12 1 1 000
01 -1|-1 100
00 O 4 -3 10
00 0|—-4 101

In this case, the matrices 77, Ty, T3 and T3; appearing in (9) and (10) are

1 2 1 1 0 0 O 4 -3 10
lel ]a TQZl ], T3:l_4 1 0 1

01 -1 -1 1 00

and T3 = l _j _? ] Therefore, as indicated above,
N ¥
Ran (A7) = Span 2 |, 1 ., Null (AT) = Span BE
1 -1
0
and
1 0
0 1
Ran (A) = Span 4 | 5
4 -1

(12)

(13)



Finally, transforming 7} to reduced echelon form yields the matrix
10 3
01 —1]|°

Therefore, the matrix 735 appearing in (12) is 115 = [ 3 ], and so

-1

-3
Null (A) = Span {( 1 )} .
1

Recapping, we see that beginning with the augmented matrix (7), one can reduce to
echelon form to obtain the matrix (9). At this point one can immediately read off bases
for both Ran (AT) and Null (AT). This leads to an alternative method for computing
bases for the subspaces Ran (A4) and Null (A). That is to simply repeat the process
described above with A replaced by A”. In this approach one begins with the augmented
matrix

[4711]

Sy | S
el (14)
where S] is in echelon form and has no zero rows. Then the rows of S; form a basis for

Ran (A), while the rows of S3 form a basis for Null (A). Applying this approach to the
example given above, we begin by reducing the augmented matrix

and reduces to the echelon form

11 -1 3100
23 1 51010
10 -4 41001
to the echelon form
11 -1 3 1 00
01 3 —-1]-210
00 0 O -3 11
Consequently,
1 1 -1
51_[01 ; _1] and Sy3=[-3 1 1]
Therefore,
) [ -3
Ran (A) = Span RE 5 and Null (4) = Span 1
3 -1 L



Eigenvalues and Eigenvectors:

Eigenvalues and eigenvectors arise in the context of square matrices. Thus, all matrices
discussed in this section are assumed to be square. Recall that a scalar A is called an eigenvalue
of the matrix A if there is a nonzero vector z, called an eigenvector, such that Az = Az. One
of the beautiful features of eigenvalues and eigenvectors is that they allow us to write matrix—
vector multiplication as scalar-vector multiplication.

We now are confronted with two important question:

1. How can we compute the eigenvalues of a matrix?

2. Having an eigenvalue for a matrix, how can we characterize its associated eigenvectors?

The key to answering both of these questions is to observe that A is an eigenvalue of A with
associated eigenvector z if and only if € Null (A — AI). Indeed, x € Null(A — AI) if and
only if (A — Al)z = 0, or equivalently, Az = Az. The subspace Null (A — \I) is called the
eigenspace associated with the eigenvalue A\. Thus, in particular, X is an eigenvalue of A if
and only if the matrix A — AI is singular. Therefore, we can answer the first question with aid
of the determinant since the determinant of a square matrix is zero if and only if the matrix
is singular. For this purpose, we define the characteristic polynomial for a square matrix A
to be the polynomial given by the determinant

p(t) =det (A —1tI) .
Then the roots of the characteristic polynomial p(¢) coincide precisely with the eigenvalues of

the matrix A.

Now having an eigenvalue A\ of the matrix A, the set of all eigenvectors associated with A
coincides with the nonzero vectors of the subspace Null (A — AI). The algebraic multiplicity
of an eigenvalue is the multiplicity of the eigenvalue as a root of the characteristic polynomial.
The geometric multiplicity of an eigenvalue is the dimension of the eigenspace Null (4 — \I).
We always have that

geometric multiplicity < algebraic multiplicity.

An eigenvalue is said to be defective if its geometric multiplicity does not equal its algebraic
multiplicity. A matrix is said to be defective if one or more of its eigenvalues is defective.

Further Notes on Matrix Multiplication:

Given two matrices A € IR"*™ and B € IR**! the matrix product C = AB is defined if and
only if m = s in which case C' is in IR"*? with

Cij=> AuwByjfori=1,...,nand j=1,... ¢
k=1

Another way to view this product is as follows. Let A;. and A.; denote the ith row and jth
column of the matrix A, respectively. Then

Cij=A.eB fori=1,...,nand j=1,...,¢,

9



where e denotes the vector dot product.

Building on this notation, we can define the matrix product of block structured matrices.
Consider the matrices M € IR™™ and T € IR™** given by

M — [Anlxml Bn1><m2 ]

anxml Danmz

and
T — Em1 Xkl le Xk2 Gm1 ng
Hm2><k1 ngsz szng ’
where n = ny +ny, m = mq +mao, and k = k; + ko + k3. The block structures for the matrices
M and T are said to be conformal with respect to matrix multiplication since

MT — [ AE + BH AF + BJ AG+ BK ]

CE+DH CF+DJ CG+ DK

Similarly, one can conformally block structure matrices with respect to matrix addition (how
is this done?).

Understanding how to manipulate matrices with respect to their block structure is an ex-
tremely powerful tool in numerical linear algebra. We give a simple example of the power of
this technique by describing Gaussian elimination as a series of matrix multiplies using the
underlying block structure of the intermediary resultants.

(03]
v =
1 a1

in IR™ with a; € IR not equal to zero and a; € IR" !, we define the matrix

-1
Glzl o) 0 ],

_aflﬂh Itn 1yx(n-1)

Given a vector

where I(,_1)x(n-1) is the (n—1) x (n—1) identity matrix, as its associated Gaussian elimination
matrix. Using the technique of block structured matrix multiplication it is easy to see that

1
G1U1 = l 0 ] .
Now consider the matrix
l (05] b{
A1 = ,
aq Bl

where b; € R™ " and B; € IR™Y*(m=1) 5o that A, € IR™*™ (assume that m > n). We have

1 ap ot
0 B1 - aflalbf )

G1A1 = l
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Define Ay = B, — o5 'a;b" and conformally decompose A as

|2 0f
AQ_la2 BQ‘|’

where ay € IR, as € IR™ 2 by € IR™ 2 and By € IR™ 2*(m2) Assume that oo # 0 and let

1 0
G2_l0 é2]7

where @2 is defined to be the Gaussian elimination matrix associated with the vector

(&)
Vo = .
a2

Then, again using the technique of block multiplication, we have

1 71bT 1 52 bfl
G2G1 A1 = Gy IR 0 1 a51b2T )
0 A2 0 O B2 — Oé;lagbg

where
1y | B
Continuing in this way (assuming the pivots oy are all non-zero), we obtain a matrix

U= GnG(n—l) te GlAl

that must be upper triangular with ones on the diagonal! This is simply the matrix U in the LU
factorization of the matrix A;. The associated matrix L is given by L = (GG (_1)- -+ G1) .
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SAMPLE PROBLEMS

1. Consider the system
4xq — z3 = 200
9331 + Ty — r3 = 200
7$1 — X9 -+ 2%3 = 200.
(a) Write the augmented matrix corresponding to this system.

(b) Reduce the augmented system in part (a) to echelon form.

(c) Describe the set of solutions to the given system.

2. Represent the linear span of the four vectors

1 —1 2 3
o 1 |1 4 e |2
‘/'C]. - 2 ’ ‘/EQ - 1 ’ '7/‘3 - 7 ’ an '1‘4 - 0 ’
1 -2 1 )
as the range space of some matrix.
3. Compute a basis for nul (A7) where A is given by
1 -1 2 3
0 1 1 =2
A= 2 17 0
1 -2 1 5
1 2 0
4. Find the inverse of the matrix B=| -1 —-4 1
0 2 1
5. Solve the following system of linear equations
I + 2$2 = 1
-1 — 4dx9 + x3 = 2
2$2 + x3 = 0.

6. Determine whether the following system of linear equations has a solution or not.

1 1 0 0 0 1

-1 0 1 1 0 2

0 -1 -1 0 1 RIS

0 0 0 -1 -1 4 0
T
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10.

11.

12.

Find a 2 by 2 square matrix B satisfying

A=B-C,
1 3 0 -1 -3 0
WhereA—<2 1 1)and0—<8 9 3).

. What is the Gaussian elimination matrix for the vector

2
-10
= ?
v 16 |

2

Show that the Gaussian elimination matrix for the vector

[z

(n—1)

where a € IR is non-zero and b € IR is non-singular by providing an expression for its

inverse.

Show that the product of two lower triangular n x n matrices is always a lower triangular
matrix.

Show that the inverse of a non-singular lower triangular matrix is always lower triangular.

A Housholder transformation on IR™ is any n x n matrix of the form

T
v
p=1-22
vy
for some non-zero vector v € IR". Given any two vectors u and w in IR" such that ||u|| = ||w||

and u # w, construct a Housholder transformation P such that Pu = w. For example, if
—6

and w=

— Ot = W
o O O

then

<
I
— Ol = O
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