1. REVIEW OF MULTI-VARIABLE CALCULUS
Throughout this course we will be working with the vector space R". For this reason we
begin with a brief review of its metric space properties
Definition 1.1 (Vector Norm). A function v : R* — R is a vector norm on R if

i v(z) >0V zeR" with equality iff x = 0.
ii. v(ax) = |alv(z) V2 € R a € R
. vz +y) <v(z)+v(y) VoyeR

We usually denote v(x) by ||z||. Norms are convex functions.

EXAMPLE: [, norms

1
=], = i lzilP)?, 1<p<oo
||33||oo = mMaX;=1,...,

— p=1,2, 00 are the most important cases.

el <1 zlls <1 [#floo <1

— The unit ball of a norm is a convex set. We denote the unit ball by B. The unit balls
for the p = 1,2, 00 norms are denoted by B;, By, and B, respectively.

1.1. Equivalence of Norms.

a(p, 9)llzllq < llzll, < Bp; )|zl

— = ]

Blpg) N1 2 3
1 1 n% n
2 |1 1 n2
3 /1 1 1




2

1.2. Continuity and the Weierstrass Theorem.

— The mapping F': R* — R” is said to be continuous at the point ¥ if
lim ||F(z)— F(z)|| =0.

[|lz—z||—0

F is said to be continuous on a set D C R" if F'is continuous at every point of D.
— A subset D C R” is said to be open if for every x € D there exists € > 0 such that
x + eB C D where

z+eB={x+eu:ucB}

and B is the unit ball of some given norm on R”.
— A subset D C R” is said to be closed if every point x satisfying

(x+eB)ND #0

for all € > 0, must be a point in D.
— A subset D C R” is said to be bounded if there exists m > 0 such that

|z|| < m for all x € D.

— A subset D C R" is said to be compact, if it is closed and bounded.
— A point T is said to be a cluster point of the set D C R" if

(T+eB)ND#0
for every € > 0.

Theorem 1.1 (Weierstrass Compactness Theorem). A set D C R™ is compact if and only
if every infinite subset of D has a cluster point in D.

Theorem 1.2 (Bolzano-Weierstrass Theorem). A subset of R**™ is compact if and only if
it 18 both closed and bounded.

Theorem 1.3 (WEIERSTRASS EXTREME VALUE THEOREM). Every continuous function
on a compact set attains its extreme values on that set.

1.3. Dual Norms. Let || - || be a given norm on R" with associated closed unit ball B. For
each z € R" define

lz[lo := max{z"y : [ly|| < 1}.

Since the transformation y — zTy is continuous (in fact, linear) and B is compact, Weier-
strass’s Theorem says that the maximum in the definition of ||z||o is attained. Thus, in
particular, the function z — ||z||p is well defined and finite-valued. Indeed, the mapping
defines a norm on R™. This norm is said to be the norm dual to the norm || -||. Thus, every
norm has a norm dual to it.

We now show that the mapping = — ||z||o is a norm.

(a) Tt is easily seen that ||z|lo = 0 if and only if z = 0. If x # 0, then

zllo = max{z"y : [ly|l < 1} > «" (ﬁ) = ol >
x




(b) From (a), [|0-z|lo =0=0-||z|o. Next suppose a € R with « # 0. Then
lezllo = max{z"(ay) : Iyl < 1}, (z = ay)
b (o=7)

In order to establish the triangle inequality, we make use of the following elementary, but
very useful, fact.

Facr: If f:R* - R and C' C D C R”, then

sup f(z) < sup f(z).
z€C €D

= max :c?z:lﬁ”i”zﬁ”z“z o
max{z? (|a|z) : 1 > [|w]|
= |al[lz|lo.

That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger
set must be smaller.

(€) |lz+zllo = max{zTy+ 2Ty : |yl <1}

9] <1 }

= max {xTyl + ZTy2 : ||y2|| <1 y Y1 = Y2

(max over a larger set;

= <max{z’y + 2"y : [yl <1 [lpol <1}
= llzllo + llzllo
FAcTs:
(i) z7y < ||z|| ly|lo (apply definition)

(i) Jlollc = ll2] o
(iii) ([lzllp)o = [lzlly where ;4 4 =1,1<p < oo
(iv) Holder’s Inequality: |z7y| < ||z, ||y,

1 1

S+ =1
P q

(v) Cauchy-Schwartz Inequality:
2Tyl < lzll2llyll:

1.4. Operator Norms. A € R™*"
[Allpq) = max{[| Azl : ||zl < 1}

EXAMPLE: |4 [A]l2,2) = max{[| Az[]s : [lz]> < 1}

[Allo = [ All(o,00) = max{ || Azloo : [[]]o0 < 1}
= max >_j=1|aij|, max row form
1Al = [[Allay = max{flAz][; : lzfl, <1}

m
max -4 |Q4], MNaAX column sum
max 37", lay,

Fact: [[Azll, < [|Allgp.gll«llo-
(a) ||A]| > 0 with equality < ||Az|| =0V z or A= 0.




(b) lleAll = max{[leAz] : [lz] <1}
= max{|e|[|Az] : |lofl <1} = |af||A]
(©) A+ Bl = max{|Az + Bz]| : ||z[| <1} < max{||Az[| + | Bz| A <1}

max{|| Az || + || Bzs|| : 21 = @3, [|21]| <1, [|zof] < 1}
max{|[Az: || + || Bzs| : [lo1]l <1, [lzafl < 1}
1A+ 1Bl

A

1.4.1. Spectral Radius. A € R*™"
p(A) := max{|A\| : z € £(A)}

Y(A) = {\ € C: Az = Az for some z # 0).
p(A) ~ spectral radius of A
Y(A) ~ spectrum of A

Facr:
(i) 14]l2 = (p(A" A))=
(ii) p(4) <14 lim AR =0
—00

(iii) p(A) <1=> I -A) = ZAi (Neumann Lemma)
i=0

1.4.2. Condition number. A € R™*"
|A||[|A7Y] if A~ exists

K(A) = { 00 otherwise
FAcCT: [Error estimates in the solution of linear equations] If Az; = b and Azy = b+ e, then

[ = 2| [lell
T < K(A) T
4] 2]

1 A

Proof. [lo] = 1Azl < [[Alllle1]] = 2+ < 141, so
s —aall _ JIAlL, Ly

< T4 (Afay — @) < A 1A ol Azy — Az
fel = ol ol
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1.5. The Frobenius Norm. There is one further norm for matrices, called the Frobenius
norm, that is very useful. Observe that we can identify R™*" with R(™" by simply stacking
the columns of a matrix one on top of the other to create a very long vector in R . The
function that takes a matrix in R™*" to a vector in R(™® by stacking columns is called vec
(or sometimes cvec).

EXAMPLE:
1

0

1 2 -3 _ 2

we(lo 1 1)) = | 4

3

4

Using vec we can define an inner product on R™*" by writting

(A, B), = vec (A)"vec (B) .

This is called the Frobenius inner product on R™*™. It is easy to show that
(A,B)p, =tr (A"B) .

This inner product gives rise to the Frobenius norm by the formula
[AllF = 1/ (A, A)p = |lvec (A)]]2.

1.6. Review of Differentiation. Let F' : R® — R™. In this course we let F; denote the
1th component functioon of F":

where each Fj is a mapping from R" to R™.
1) Let F: R* — R™ and let z,d € R". If the limit
lm F(z +td) — F(x)

40 t = Flz;d)

exists, it is called the directional derivative of F' at x in the direction A. If this limit
exists for all d € R" and is linear in the d argument,

F'(z;ady + Bds) = aF'(z;dy) + BF' (x;dy),
then F' is said to be Gateaux differentiable at x.
2) Let F': R* — R™ and let z € R™. If there exists J € R™*" such that
1F(y) — (F(z)+ Jy— =)l _

hm - 07
lly—a||—0 ly — ||




then F' is said to be Fréchet differentiable at x and J is said to be its “Fréchet
derivative”. It can be shown that this definition is independent of the choice of
norm. We denote J by J = F'(z) or J = VF(z).

3) In the case where f : R* — R the notation differs a bit from that given above. In
this case we write Vf(z) = f'(xz)T, and we call V f(z) the gradient of f at z.

FAcCTs:

(i) If F'(z) exists, it is unique.
(ii) If F'(z) exists, then F'(x;d) exists for all d and

F'(z;d) = F'(z)d.

(iii) If F'(z) exists, then F' is continuous at z.
(iv) (Matrix Representation)
Suppose F'(z) exists for all £ near T and that the mapping z — F'(z) is continuous
at T,
lim ||F'(z)— F'(z)]|=0
[|lz—z||—0
(it can again be shown that continuity is independent of the choice of norm, in ). Then
0F;/0x; exist for each i =1,...,m, j=1,...,n and F'(T) has the representation

oFR 0k o

gxl gl‘z T gzn VF(z)T
F, OF F _
oF, ... ... OFn VFn(2)"
ox1 Oxn
where each partial derivative is evaluated at Z = (Ty,...,Z,)’. This matrix is called
the Jacobian matrix for F' at Z. However, in the case where m = 1, recall from above
T
that V f(z) is called the gradient and V f(z) = [86—{1, c %} :

(v) (Chain Rule) Let F : A C R™ — RF be differentiable on the open set A and let
G : B ¢ R* — R be differentiable on the open set B. If F(A) C B, then the
composite function G o F' is differentiable on A and

(Go F)(z) =G'(F(x)) o F'(z).

(vi) The Mean Value Theorem:
(a) If f : R — R is differentiable, then for every z,y € R there exists z between x
and y such that

fly) = f(=)+ )y — ).

(b) If f: R* — R is differentiable, then for every z,y € R there is a z € [z, y] such
that

fly)=f@)+ V)" (y—a).



(c) If F:R"® — R™ continuously differentiable, then for every z,y € R

1z = yllp-

1F(y) — F(z)ll < [SUP £ (2) | p.)

2€[z,y]

PROOF OF THE MEAN VALUE THEOREM: (b): Set ¢(t) = f(z + ¢t(y — z)). Then, by the
chain rule, ¢'(t) = Vf(z+t(y —z))" (y —x) so that ¢ is differentiable. Moreover, ¢ : R — R.
Thus, by (a), there exists ¢ € (0, 1) such that

o(1) = ¢(0) + ¢'(B)(1 - 0),

or equivalently,
F(y) = f(2) + V()T (y — )

where z = x + t(y — x). |
1.6.1. The Implicit Function Theorem. Let F : R*™™ — R" be continuously differentiable
on an open set E C R"*™. Further suppose that there is a point (Z,7) € R**™ at which
F(z,y) =0. If V,F(Z,¥) is invertable, then there exist open sets U C R*™™ and W C R™,
with (Z,7) € U and g € W, having the following property:
To every y € W corresponds a unique x € R such that

(z,y) €U and F(z,y)=0.
Moreover, if z is defined to be G(y), then G is a continuously differentiable mapping of W
into R" satisfying
G@) =1, F(G),y)=0YyeW, and G'(J) =—(V.F(,7) 'V, F(z,7) .
1.6.2. Some facts about the Second Derivative. Let f : R* — R so that Vf : R* — R". The

second derivative of f is just the derivative of Vf as a mapping from R" to R”. Hence,
VIV f(z)] = V2f(x) is an n X n matrix (note that we can also denote V2 f(x) by f"(x)).

(i) If Vf exists and is continuous at z, then it is given as the matrix of second partials

of f at x:
02 f
Vf) = a0
amiax]-
Moreover, 24— = _8L_ for all 4,7 = 1,...,n. The matrix V2f(z) is called the

? Ox;0x; 0z 0x;
Hessian of f at z. It is a symmetric matrix.
(ii) Second-Order Taylor Theorem:
If f:R* — R is twice continuously differentiable on an open set containing [z, y],
then there is a z € [z, y] such that

F) = F@) + V@) (g = 2) + 50y~ ) VS )y o).
It can be shown that

[f(y) = (f(@) + f(2)(y = 2))| < %Ilw—yllﬁ sup [|Vf(2)]

z€[z,y

(pq)

for any choice of p and ¢ from [1, o¢].
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1.6.3. Integration. Let f: R* — R! be differentiable and set ¢(t) = f(z +t(y — x)) so that
¢:R — R. Then

fy) = f(z) = @(1) = @(0) = [y & (t)dt
= [y Vlaly — 2)"(y — z)dt
Similarly, if F': R* — R™, then
Jo VR +ty — 2))7(y — o)dt
Fy) - F(z) = :
[ VEu(z+t(y — )7 (y — z)dt
= [, F'z+ty—2))(y — z)dt

1.6.4. More Facts about Continuity. Let F': R* — R™.

— We say that F'is continuous relative to a set D C R" if for every x € D and € > 0
there exists a d(z, €) > 0 such that

|F(y) — F(z)|| < € whenever ||y —z|| < d(z,e¢) and y € D.

— We say that F' is uniformly continuous relative to D C R” if for every € > 0 there
exists a d(e) > 0 such that

|F(y) — F(z)|| < € whenever ||y —z|| < d(¢) and y € D.

Fact: If F is continuous on a compact set D C R”, then F' is uniformly continuous on D.

— We say that F' is Lipschitz continuous relative to a set D C R™ if there exists a
constant K > 0 such that

|1F(z) — F(y)ll < Kllz -y
for all z,y € D.

FacT: Lipschitz continuity implies uniform continuity.
Proof. § = ¢/K. O

EXAMPLES:

(1) 4(x) = 27! is continuous on (0, 1), but it is not uniformly continuous on (0, 1).
(2) f(z) = v/ is uniformly continuous on [0, 1], but it is not Lipschitz continuous on
[0, 1].

FAcT: If F' exists and is continuous on a compact convex set D C R™, then F is Lipschitz
continuous on D.



Proof. Mean value Theorem:
|1F(z) = F(y)ll < (sup [F'(z)[)llz - yl|-

2€[z,y]

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz
constant provides bounds on rate of change.
K slope k

< slope (-K)
U

1.6.5. Quadratic Bound Lemma. Let F' : R — R™ be such that F”’ is Lipschitz continuous
on the convex set D C R™. Then

I1F(y) — (F(z) + F'(z)(y — 2))|| < %Hy —
for all z,y € D where K is a Lipschitz constant for F' on D.
Proof. F(y) — F(z) — F'(z)(y —z) = foi Fl(z +t(y — 2))(y — x)dt — F'(z)(y — =)
= [y [F'@+tly—2)) - F'(2)|(y — z)dt
1F(y) — (F(z) + F'(z)(y — 2))|l | lfol[F'(-T +t(y — ) — F'(2)](y — =)dt]
Jo I(F'(z +t(y — 2) — F'(2))(y — z)||dt

<
1
< o IF' @ +t(y —2)) = F'(2)lllly — oldt
< o Ktlly — =|]*dt
Y T
= Slly—=l*
O
1.6.6. Some Facts about Symmetric Matrices. Let H € R**" be symmetric, i.e. H' = H
(1) There exists an orthonormal basis of eigen-vectors for H, i.e. if \{ > Ao > --- > A,
are the n eigenvalues of H (not necessarily distinct), then there exist vectors ¢, . .., ¢,

such that \;q; = Hg; i = 1,...,n with ¢f ¢; = &;;. Equivalently, there exists a unitary
transformation @ = {q1, ..., ¢,} such that

H=QAQ"
where A = diag[A1, ..., Ay].
(2) H € R is positive semi-definite, i.e.

2T Hz > 0forall z € R",
ifand only if VA€ & (3(H + H"))  x>0.



