Quadratic Programming

1. INTRODUCTION

The linear programming model is a very powerful tool for the analy-
sis of a wide variety of problems in the sciences, industry, engineering,
and business. However, it does have its limits. Not all phenomena are
linear, and once nonlinearities enter the picture an LP model is at best
only a first-order approximation. The next level of complexity beyond
linear programming is quadratic programming. This model allows us to
include nonlinearities of a quadratic nature into the objective function.
As we shall see this will be a useful tool for including the Markowitz
mean-variance models of uncertainty in the selection of optimal port-
folios.

A quadratic program (QP) is an optimization problem wherein one
either minimizes or maximizes a quadratic objective function of a fi-
nite number of decision variable subject to a finite number of linear
inequality and/or equality constraints. A quadratic function of a finite

number of variables © = (1, %, ...,%,)? is any function of the form
n 1 n n
flz)=a + chxj + 3 Zqujmkxj.
j=1 k=1 j=1

Using matrix notation, this expression simplifies to

1
fl) = a + "z + 22" Qu,

2
where
C1 g1 Q12 --- (Qin
o= 0'2 and Q= Q?l 61?2 .- Q?n
Cn dn1 Gn2 --- Gnn

The factor of one half preceeding the quadratic term in the function f
is included for the sake of convenience since it simplifies the expressions
for the first and second derivatives of f. With no loss in generality, we
may as well assume that the matrix () is symmetric since

CL'TQ.CL' — (ZCTQQT)T — QTTQTZC — %(xTQac +$TQTIL') — CCT(Q—FTQT

and so we are free to replace the matric () by the symmetric matrix
Q+Q"
2

)x’

. Henceforth, we will assume that the matrix () is symmetric.
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The QP standard form that we use is
Q  minimize 'z + 327 Qx
subject to Az <b, 0 <z,

where A € IR™" and b € IR™. Just as in the case of linear program-
ming, every quadratic program can be transformed into one in standard
form. Observed that we have simplified the expression for the objective
function by dropping the constant term « since it plays no role in the
optimization step.

2. OPTIMALITY CONDITIONS

The first step in the analysis of the problem @Q is to derive conditions
that allow us to recognize when a particular vector Z is a solution,
or local solution, to the problem. For example, when we minimize a
function of one variable we first take the derivative and see if it is zero.
If it is, then we take the second derivative and check that it is positive.
If this is also true, then we know that the point under consideration
is a local minimizer of the function. When constraints are present,
the unconstrained optimality employed are the KKT conditions that
we derived in our study of constrained optimization. We now describe
these conditions in the context of quadratic programming.

The Lagrangian for @ is the function

1
L(l‘a Y, Z) = ixTQx + CTJ? + yT(Al' - b) - ZTxa

where 0 < y and 0 < z. The KKT conditions become

: (i) Az < band 0 < z, (primal feasibility)

: (ii) 0 <y and 0 < 2z (dual feasibility)

: (iii) ¥y (Az — b) = 0 and 2Tz = 0 (complementarity)

: (iv) 0=V, L(z,y,2) = Qz + c+ ATy — z (stationarity)

Note that we can drop the variable 2z from these conditions by making

use of condition (iv) to write z = Qz+c+A”Ty. The resulting conditions
yield what we will call the KK'T conditions for Q.

Definition 2.1. (Karush-Kuhn-Tucker Conditions for Q)
A pair (z,y) € R" x IR™ is said to be a Karush-Kuhn-Tucker pair
(or KKT pair) for the quadratic program Q if and only if the following
conditions are satisfied:

0 < z,Az < b (primal feasibility)

0 < y,0< c+Qz+ ATy, (dual feasibility)

0=y (Az —b), and 0 = 2" (c+ Qz + ATy) . (complementarity)
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Theorem 2.2. (First-Order Necessary Conditions for Optimality in
Quadratic Programming) If T solves Q, then there exists a vector § €
R™ such that (Z,79) is a KKT pair for Q.

We now consider the convex case. The constraint region in Q is
already a polyhedral convex set, so we need only consider the objective
f(z) = 327Qz + ¢"z. From our work with convex functions we know
that f is convex if and only if V?f(x) = Q is positive semi-definite
(assuming @ is symmetric). Our results on KKT conditions in the
convex case yield the following result.

Theorem 2.3. [Necessary and Sufficient Condition for Optimality in
Convex Quadratic Programming/

If Q) is symmetric and positive semi-definite, the T solves Q if and only
if there exists y € IR™ such that (Z,7y) is a KKT pair for Q.

Exercises

(1) Write the following quadratic functions in matrix form:
(a) f(x1,22) = 573 — 2T9m9 + 3.
(b) f(z1,x —2) = 22% + 23 — 22129 — 521 — 225.
(©) F(2,9,2) = (2 — 1)? — 2 — 1)y - 3) +2(y - 3)2
(2) Determine if the matrices obtained in problem 1 are positive
definite, positive semi-definite, or neither.
(3) What are the KKT conditions for the following QPs?

(a)

minimize 2% + 23 — 22179 — 511 — 279
subject to 3z + 2z < 20

—5.’L'1 + 3.’E2 S 4

0 S T, 0 S Ty .

minimize 53 — 2z,75 + 573
T1+x0=1
0<z, 0< 2y .

(4) Let 0 < 4, @ € R™™™ be symmetric and positive definite, and
m € IR" be such that each component of m is positive. Define
the vector e € IR" to be the vector each of whose components
is the number 1. We will further assume that the vectors m
and e are linearly independent. Consider the convex quadratic



program

M miminize 327 Qx
subject to ez =1, mTz > 6.

(a) Show that a solution to this quadratic program must exist.
(This is a bonus question. You are not required to know
how to answer on a quiz or exam.)

(b) Use the KKT conditions for this problem to show that

either
T -1
mQe s
eTQ e —
in which case
1

Q'e

T = T
solves M, or the solution to M is given by
T=aQ e+ pBQ'm,

where o and [ is the unique solution to the 2 x 2 system

efQ e e'Q'm ] ( o ) _ ( 1 )

Q7 'm mTQ'm B)\6§ )"

(5) Consider the quadratic program
Qy  minimize c’u+pv+ L[ Qu+ 20" Mu+ v"Ho

subject to Au+ Bv <r

Fu+Fv=h
0<u,

where
Aec R™" BeR™. FEecR>*, FeclR* and M e R™",
and
Q€ R™™ and H e R"™ are symmetric,
and
ceR', peR', reR", and helR.

Follow the proceedure given above for the quadratic program
Q to show that one can derive the following set of first-order



optimality conditions (KKT conditions) for the problem Qj:

Au—+ By <,
FEu+ Fv=h,
0 < u,

0<c+Qu+M'v+ ATy + ETw,
0=p+ Hv+ Mu+ By + Flw,
0<uy,
0=u" [c—i—Qu—i—MTv—l-ATy—i—ETw],
0=y" [Au+ Bv —1] .



