Solving LPs, QPs, and LCPs

1. THE LINEAR COMPLEMENTARITY PROBLEM

The KKT conditions for quadratic programming yield an instance
of a more general class of problems called linear complementarity prob-
lems. In order to see this connection, consider the quadratic program

Q minimize 3u'Qu — v
subject to Au <b, 0 <u,

where Q € R"*", A€ R™", c€ IR", and b € IR™. Define

(1) M:(_QA %T> and q:<z>.

Then the KKT conditions for the quadratic program Q are equivalent
to the conditions

y=Mz+q, y'z=0 0<z and 0<y,

where

The Linear Complementarity Problem: (LCP)
Given M € IR™" and ¢q € IR", find z and y in IR" satisfying

y=Mz+q, z'y=0 0<z, and 0<y.

In the context of quadratic programming, we know that solving the
associated LCP will solve the @ if the matrix () is positive semi-definite.
If this is the case, then it is easily seen that the matrix M as defined in
(1) is also positive semi-definite but not symmetric. This gives rise to a
special class of LCPs. The problem LCP is said to be a monotone linear
complementarity problem if the matrix M is positive semi-definite. In
the remainder of this section, we briefly discuss a class of methods,
called interior point methods, for solving the monotone LCP. Note that
this algorithm can be used not only to solve quadratic programs when
(Q is positive semi-definite, but can also be used to solve linear programs
(Q=0).

In these notes we will always denote the set of solutions to the prob-
lem LCP by

S={(z,y) :y=Mz+gq, 0<z, 0<y, 2"y =0}.
1
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Before developing an algorithm for locating points in the set S, we
study conditions under which S is nonempty and bounded.

2. BOUNDEDNESS PROPERTIES OF LCP

Monotone LCP’s are naturally associated with the following qua-
dratic program:

minz7(Mz + q)
subject to 0 < Mx +¢q, 0 < z.

Observe that this QP must always have a finite optimal value whenever
it is feasible and this optimal value is non-negative. Indeed, the optimal
value is zero precisely when S # () in which case S is also the set of
solutions to QP-LCP.

In our study of (LCP) we also need to consider properties of the
following sets:

(QP-LCP)

A = {(z,y) e R"x R": Mz +q =1y}

F = {(z,y) e B" x R": Mz +q=y,0<,0 <y}
Fo = {(z,y) e "X R": Mz +q=y,0<z,0<y}
and
F(t) = {(x,y)E]R”XR":Mx+q=y,0§x,0§y,xTy§t}.

The boundedness of the sets F(t) and S are related to the condition
that F, is nonempty.

Theorem 2.1. If M is positive semi—definite and F, is nonempty,
then F(t) is bounded for all t > 0.

Proof. Let (z,y) € F, and let (z,y) € F(t). Then (z —2)T(y—7) >0
since M is positive semi—definite. Therefore,
t+z'y>aTy+z'y >z y+y e >kl ()l

where K 1= m1n1:1,2,...,n{fz‘; gi}- =

3. THE CENTRAL PATH

Given a vector z € IR™ we denote by X the diagonal matrix diag(x).
Hence Y = diag(y), U = diag(u), W = diag(w), etc. Consider the
function

_ | Mz —y+q
F(z,y) = [ XYe :|

where e € IR™ is the vector of all ones. Clearly, (z,y) € R" x R"
solves (LCP) if and only if 0 < z,y, and F(z,y) = 0. The basic idea
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behind interior point algorithms for solving (LCP) is to apply a damped
Newton’s method to the function F(z,y) on the interior of the cone
IR x IRY. In order to apply Newton’s method to F' we need to know
when its derivative is non-singular. Here

Fl(z,y) = H{ }]}

In this regard, following result is key.

Theorem 3.1. If M is positive semi-definite, then F'(x,y) is non-
singular whenever 0 < x, 0 < y.

Proof. Let (z,y) € int(IR"™ x IR™) and suppose that F'(z,y) ( Z ) =
Then

v=Muand v =—-X"'Yu.
Hence, 0 > —u' X 'Yu=u"Mu >0, s0o u" X 'Yu =0 or u=0. But
then v = 0 as well. O

Thus, the Newton step is well defined at points in int(IR?} x IR%).
Moreover, one can always choose a step length so that a damped New-
ton step stays in int(JR} x IR7). However, it may happen that the
iterates approach the boundary of IR} x IR too quickly and the pro-
cedure gets bogged down. For this reason we introduce the notion of a
central path.

Definition 3.2. The set
C:={(z,y) € F: XYe =te for somet > 0}
is called the central path for (LCP).

We now proceed to show that if F, # () and M is positive semi-
definite, then C exists. The first step is to establish the following lemma
concerning the function

u(z,y) = XYe.

Lemma 3.3. Suppose M is positive semi—definite and F, # ().
(1) The system
u(z,y) =a and (z,y) € Fy
has a solution for every a > 0.
(2) The mapping u : IR™ x IR™ — IR™ is diffeomorphism between F,

and int (Rﬁ), i.e. u 1S a one—to—one surjective mapping between
Fi and int (IR"Y) withu € C® on Fy and u™" € C* on int (IRT).
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Proof. (1) Let @ > 0 and (Z,y) € Fy. Set @ = u(z,y). Consider the

function

~ 0

F(Jﬁ,y,t) = F(Jﬁ,y) - [ (1 —t)a-i—ta :| .
Note that l?’(f, 7,0) =0 and

~ M -1
VeyF(z,y,t) = VF(z,y) = [ } )

Yy X
Hence, by the implicit function theorem, there is an open neigh-

borhood U C IR" x IR™ containing (Z,%), 6 > 0, and a unique
smooth mapping ¢ — (z(t),y(¢)) on [0,0) such that

(z(t),y(t)) € U and F(z(t),y(t)) = 0 on [0, d).

Let & be the largest such 6 in [0, 1]. We claim that § = 1. First ob-
serve that (z(t),y(t)) € F(%) for  := max{a’e,a’e}. Moreover,
F(t) is a compact set by Theorem 2.1. Hence, for some sequence
t; T & there exists an (7,%) such that (z, (t;),y(t:)) — (Z,7).
Clearly, (¥,y) € F,,. Applying the implicit function theorem
again at (7,7) yields a contradiction to the maximality of §. Fi-
nally, observe that

F(z(1),y(1)) =a

which establishes the result.
In Part (1) above, we have already shown that u is a surjective
map from F, to IR}. We now show that it is one-to—one. As-

sume to the contrary, that u(z',y') = u(z?,y?) for distinct points
(z',y') and (22,y?) in F,. Then

M(z' —2*) =y' —y® and zjy; =2y >0Vi=1,...,n.
Since (z' — 22)" M (x' — 2%) > 0, we have
(a' —2*)T(y' —y*) 2 0.

Hence for some 7 with z; # z? we must have (z] — z2)(y; —
y?) > 0. If 2} > 22, then y; > y? > 0. But then z}y] # z?y?.
Similarly, if z; < zZ, then 0 < y; < 37, so again z]y; # x?y2.
This contradiction establishes that u is one-to—one.

Finally, it is clear that u is C*™. To see that u~! is C™ simply
note that (u™')'(a) = [XM + Y]|™! where u™'(a) = (z,y). To see
that [X M + Y]™! exists write [XM + Y] = X[M + X~ 'Y] where
both X and [M + X 'Y are positive definite matrices.

]
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An immediate consequence of this Lemma is the following existence
theorem for (LCP).

Theorem 3.4. If M is positive semi-definite and F,. # 0, then there
exists a solution to (LCP).

Proof. Let (7,y) € F,.. Then F(z'%y) is compact by Theorem 2.1.
Moreover, the system F(z,y) = [ /OETye } is solvable for all 1 € (0, 1].

Hence there exist {(z;,y;)} C Fy, u; 4 0, and (Z,y) € F such that
I o .

(x5, ;) — (Z,7y) and F(x;,y;) = [ iz e } But then F(Z,%) = 0 so

that (Z,7) € S. O

The existence of the central path can now also be established. The
proof is similar to the proof given for Part 2 of Lemma 3.3.

Theorem 3.5. If M is positive semi-definite and F, # 0, then the
central path C exists as a smooth curve in F,.

Proof. By Parts 1 and 2 of Lemma 3.3, for each ¢ > 0 there exist a
unique (z(2),y(1)) € Fy with F(z(t), y(t)) = [ . ] Define

Fle,y,0) = Fz,y) — [t(l } .

Given a triple (z(t), y(t),t) for ¢ > 0, we have that V(w,y)ﬁ(x(f), y(t)) =
VF(z(t),y(t)) is nonsingular by Theorem 3.1. Hence, by the implicit
function theorem, there exists ¢; € (0,¢] and ¢; > ¢ such that the
mapping ¢t — (x(t),y(t)) is smooth on (¢1,%3). Let ¢; be the smallest
such t; and ¢, be the largest such t5. Due to the compactness of F(t)
for all ¢ > 0, we obtain as in the proof of Part (1) of Lemma 3.3 that
t; =0 and ty = +o0. O

4. ASYMPTOTIC BEHAVIOR OF THE CENTRAL PATH

In this section we study the limiting behavior of the central path as
t 1 0. In particular, we show that this limit exists and is a solution of
(LCP). The key to this analysis is the potential function

P(z,y,t) ="y —t Y In(zy)

i=1
defined over the set F, x {t > 0}. Let us first observe that for fixed
t > 0 the function P(-,-,t) is strictly convex on F,. In order to see
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this observe that

(z,y

2
V? Pz, y,t) = {tX ! ] .

Hence if (z1,y1), (22, y2) € F,, then

T
T1 — o 2 T1 — T2
Vi P t
[ Y1 — Yo } (@) (z,9:%) [ Y1 — Yo }

= t[(z1 — 22) " X (21 — x2) + (11 — 12)TY 2 (11 — 1))
+2(z1 — 22)" (11 — v2)

> 0.

Therefore, for each ¢ > 0, the solution to the problem

(P;) min P(x,y,t)
subject to (z,y) € Fy,

if it exists, is unique. With this in mind we give the following theorem.

Theorem 4.1. If M is positive semi-definite and F, # 0, then the
unique solution to the problem (P;) exists and corresponds to the unique
0

te ], i.e., it lies on the central

solution of the equation F(x,y) = [
path.

Proof. Due to our observation concerning the strict convexity of P(z, y,t),
we need only show that the unique solution, (z(t),y(t)), to F(z,y) =

[ toe satisfies the first-order optimality conditions for (P;). The first-

order conditions for (P;) are
V(z,y)P(xay,t)Eker[M _I}L:Ran[]_wl]

-1

Since V(p)P(z,y,t) = [ }Z:g—l

conditions imply the existence of a vector v € IR™ such that

], where (z7'); := (z;)7', these

y—tz ™t = Mv

T — ty_l = —.
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Multiplying the first of these equations by X and the second by Y, we
get the system

Xy—te =XMv
Yr—te =-Yw.

Therefore, [XM + Y]v = 0, or equivalently, [M + X~ 'Y]v = 0. But
[M + X~'Y] is a positive definite matrix so we must have v = 0.
Consequently, the conditions Xy =te, 0 < z, 0 < y, and Mx +q =y,
are equivalent to the first-order necessary and sufficient conditions in
(P;). The unique solution of this system is (x(¢),y(t)) so this is the
unique solution to (P;). O

Next set

E = {i:z;=0=y; for all (z,y) € S},
B = {i:x; #0 for some (z,y) € S}, and
N = {i:y; #0 for some (z,y) € S}.

We make the following observations about these index sets:

1. Since S is convex, there exists (Z,7) € S with

;>0 V i€ B, and
>0 V i€ N.

To obtain (Z,%y) just take a convex combination of points (x,y)
for which z; >0¢ € B and y; > 0 for i € N.

2. Due to the above observation we have BN N = (). This implies
that the sets B, E, and N form a partition of the integers from 1
ton,ie {1,2,...,n} = BUNUE with BNN =0, BNE =0,
and NN E = 0.

3. For all (z,y) € S we have z; = 0 for all i € {1,2,...,n}\B
and y; = 0 for all 4 € {1,2,...,n}\N, where B = BU E and
N=NUE.

4. The solution set S has the representation

(2) S:{(xay) ‘OSIIB; OSyNa

0:£L‘ﬁ,

We claim that the limit as ¢ \, 0 in the central path is the unique
solution to the problem

(Py) min—[> glnz; + >y Iny
subject to (z,y) € S.
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One can view the problem (Py) as the limit of the problems (P;) as
t \( 0. Observe that

—Zlnxi — Zlnyi =—1In [(Hm,) (Hy,)] .
B N B N
Therefore, since —In(p) is strictly decreasing for g > 0, minimizing

1o [(11) (11)] vr St s s i (1) (1)

over §. That is, (Py) is equivalent to the problem

3) () s (1) (17
subject to (z,y) € S.

Using this fact we can show that the problem (Py) has a solution and
that it is unique.

Lemma 4.2. If M is positive semi-definite and F # (), then the solu-
tion (z*,y*) to (Py) exists, is unique, and satisfies x > 0 and yi > 0.

Proof. By Theorem 2.1, § is a compact set. Hence the solution to (150),
or equivalently (Py), exists since problem (PO) is the maximization of
a continuous function over a compact set. The fact that the solution is
unique is the consequence of the fact that the objective function in (Py)
is strictly convex on S as seen by considering the representation (2).
The condition that the solution (z*,y*) satisfies 23 > 0 and y3 > 0
follows from the finiteness of the optimal value. O

Before proving the main result, we first establish the following tech-
nical lemma.

Lemma 4.3. Let (z*,y*) € S be the unique solution to (Py), let*(m, y) €
C, and set u = x"y/n. Then XYe = pue, ZB% + ZNZ— < n,
g > %a:} >0, and yy > %y}‘v > 0.
Proof. As usual,
0 < (z—2")"(y—y")
= Ty — Ty — 2Ty + 2Ty
SO
Ty + Ty < 2Ty = np.
Since (z,y) € C, we have XYe = pe so

z=py " and y = pz .



But then
,u(x*Tx_1+y*Ty_1) < x*Ty—i—y*Ta:

= pun,

or equivalently,
¥ *
DRI SLI
5 Li N Y
Due to the positivity of each term in the sum, we get that

—+<n forieB and = <n forié€e N,

or equivalently,
l:v*B <zp and lyj‘v < yn.
n B n B
O

Theorem 4.4. Let M be positive semi-definite, F, # 0, and assume
that E = (0. Then the limit of the central path C exists ast | 0 and s
the solution to the problem (P ).

Proof. Let (z,y) be any cluster point of C as t | 0. Since (Z,7) € S,
we have that 3 = 0 and yz = 0. Since this is true for every cluster
point, we obtain that z5(t) — 0 and ygz(t) — 0.

Letting (z*,y*) be the unique solution to (Py) and taking the limit
as t \( 0, we obtain from Lemma 4.3 that

(4) SEey e
B N

ig > %x} > 0, and §y > %y}‘v > 0. Thus, in particular, (Z,7) is
feasible for (Py).

Next recall that the arithmetic—geometric mean inequality says that
for any collection {71, 7, ..., yn} of non—negative real numbers we have
that

N 1/N LN
(H %) <
=1 =1

Therefore, by (4) and the fact that BUN = {1,2,...,n}, we have

n
* * 1 * *
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Consequently,
(T=10) = (T0=110) (T2 11%)
B N B N g Yi'y Y
B N

But then (Z,7) must also be a solution to (Pp) in which case (Z,7)
(z*,y*) by uniqueness. Since (z*,y*) is the only possible cluster point,
it must be the case that the limit of the central path is (z*, y*). O

5. AN INFEASIBLE INTERIOR POINT ALGORITHM

We now build a numerical procedure for solving the monotone LCP
based on the theoretical observations of the previous sections. The
basic idea is to try to follow the central path to the solution. In order
to do this the algorithm must be constructed so that it stays close to the
central path while reducing the homotopy parameter ¢ at each iteration.
Then as ¢ is reduced to zero we hopefully converge to a solution. There
are several obstacles that must be overcome for this strategy to succeed.
The most obvious and significant of these is that it is very difficult to
locate points in the set F, let alone points on the central path. For
this reason we consider algorithms that initialize at points satisfying
0 <z and 0 < y but for which the affine constraint Mz + ¢ = y may
be violated. Algorithms of this type are called infeasible interior point
algorithms.

Infeasible interior point algorithms must balance reduction in the
homotopy parameter ¢ with reduction in the residual of the affine con-
straints Mx 4+ ¢ = y. Indeed, the overall success of the procedure
depends on how this balance in achieved. In general, one must reduce
these two quantities at roughly the same rate while simultaneously stay-
ing sufficiently close to the central path. An algorithm that attempts
to achieve this balance is given below.



Infeasible Interior Point Algorithm for LCP

Initialization:
€ =108
o =0 (
20 =2

(¥°); =min{ (Mz°+q);, 2}, i=1,2,...,n
o=@y

p =|Mz® - 3" +q|lw

Tteration: While n7 > € or p > e,
Step 1: (Compute the Newton Step)
Solve the linear equation

rat= et () = (

or equivalently, solve the equation

(

scaling parameter

(

0

oTe

stopping
tolerance
homotopy

(initial z)
(initial y)

homotopy
parameter

(residual)

)

M —I ar \ _ [ —MzF+yF—q
Y X ay | ote — X Yze ’

for Az and ay.
Step 2: (Compute a Feasible Steplength)

—(z*);

t, = mln{ (A2)i : (ASE)Z < O}

t, =min{1, 0.999¢,}

ty, = min{_(yk)i : (ay); < 0}

(Ay)i
t, = min{1, 0.999¢,}

Step 3: (Update Iterates)

okl = 2k 4 tax
Yy = ykF +tay
k =k+1
T — ($k)Tyk

p = |[Mz* —y* + ¢l

)

)

11

)
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Step 4: (Update Scaling Parameter)

|

1
min {.5, (1—t,)%, (1—1t,)

lp—n7]
7 p+10nT

yif nt <eand p > €,

} , otherwise.
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Exercises

In all of the following exercises assume that the matrix @ € IRP*?
is symmetric and positive semi-definite. Also assume that ¢ € IRP,
Ae RV? E € R de R and b e R™.

1. Consider the following QP:
Q; minimize 1u"Qu— c'u
subject to Au=120.

Show that u solves Q; if and only if there exists a vector v € IR™
such that Mz = ¢, where

M:[j?T _ng},x:(z), andqz(i).
2. Assume that Nul (E™) = {0} and consider the QP
Q, minimize %UTQU,—CtU,
subject to Au<b, Fu=d, 0<u.
Related to Qs is the so-called horizontal LCP

The Horizontal LCP (HLCP)

Given M € R™", G € R*" h € IRF, and ¢ € R", find z € R",
z € IRF, and y € IR" such that

Mz+G'2+q=vy, Gt =h, 0<z, 0<y, andz'y=0.

(a) Write the KKT conditions for Q.

(b) Show that the KKT conditions for Q, are an instance of the
HLCP by specifying M, G, h, and ¢ interms of Q, A, E, ¢, b,
and d.

(c) Show that under this specification Nul (ET) = {0} if and only
if Nul (GT) = {0}.

(d) Again, show that under this specification the positive semi-
definiteness of () implies that M is positive semi-definite.

3. Now consider the general HLCP introduced in problem 2 above.

Define
Mz+GTz—y+gq
F(z,z,y) = Gr—h
XYe
(a) Show that (z, z,y) solves the HLCP if and only if F/(z, z,y) =
0and 0 < z,y.

(b) Assume that M is positive semi-definite and Nul (GT) = {0}.
Show that F'(x, z, y) is nonsingular whenever 0 < z and 0 < y.
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(c) Define
Fr={(z,2,y) : Me +G"2+q=y, Gz =h, 0<z, 0 <y}.

Under the assumption that M is positive semi-definite, Nul (GT) =
{0}, and F, # 0, show that the set

Ft)={(z,2,y) : Ma+G"24q=y, Gz =h, 0< 1z, 0<y, 2"y <t}

is compact for all £ > 0.
(Hint: There are a number of ways to show this. The best
way to start is to first show that for all (z,z,y) € F(t) (z,vy)
is bounded in 1-norm. This is done using exactly the same
kind of argument as is used in the LCP case. To show that
the z component is also bounded there are again a number of
possible arguments. The most direct argument uses the fact
that the matrix GG' is invertible (see the midterm exam).)
(d) What is the appropriate definition for the central path for
HLCP?



