OPTIMALITY CONDITIONS

1. UNCONSTRAINED OPTIMIZATION

1.1. Existence. Consider the problem of minimizing the function f : R* — R where f is
continuous on all of R":

P min f(x).

reR™
As we have seen there is no guarantee that f has a minimum value, or if it does, there is
no guarantee that it is attained. In this regard, the first issue we address is existence of
solutions to P. In particular, we are interested in conditions under which we can be certain
that a global solution to P exists.
Recall that we already have at our disposal a rudimentary existence result for constrained
problems. This is the Weierstrass extreme value theorem.

Theorem 1.1. (WEIERSTRASS EXTREME VALUE THEOREM) Every continuous function
on a compact set attains its extreme values on that set.

We now build a basic existence result for unconstrained problems on this theorem. For
this we make use of the notion of a coercive function.

Definition 1.1. A function f : R* — R is said to be coercive if for every sequence {z"} C R"
for which ||x”|| — oo it must be the case that f(z") — oo as well.

Continuous coercive functions can be characterized by an underlying compactness property
on their lower level sets.

Theorem 1.2. (Coercivity and Compactness) Let f : R* — R be continuous on all of R™.
The function f is coercive if and only if for every a € R the set {z |f(z) < a} is compact.

Proof. We first show that the coercivity of f implies the compactness of the sets {z |f(z) < a}.
We begin by noting that the continuity of f implies the closedness of the sets {z |f(z) < a}.
Thus, by the Bolzano-Weierstrass Theorem, it remains only to show that any set of the form
{z |f(z) < a} is bounded. We show this by contradiction. Suppose to the contrary that
there is an o € R" such that the set S = {z |f(z) < a} is unbounded. Then there must
exist a sequence {z”} C S with ||z¥|| — co. But then, by the coercivity of f, we must also
have f(z") — oo. This contradicts the fact that f(z*) < a for all v = 1,2,.... Therefore
the set S must be bounded.

Let us now assume that each of the sets {z |f(z) < a} is bounded and let {z"} C R"
be such that ||z”|| — oco. Let us suppose that there exists a subsequence of the integers
J C N such that the set {f(z”)}; is bounded above. Then there exists « € R" such that
{z"}; C {z |f(x) < a}. But this cannot be the case since each of the sets {z |f(z) < o} is
bounded while every subsequence of the sequence {z"} is unbounded by definition. Therefore,
the set {f(z")}, cannot be bounded, and so the sequence {f(z”)} contains no bounded
subsequence, i.e. f(z") — oo. O

This result in conjunction with Weierstrass’s Theorem immediately yields the following

existence result for the problem P.
1
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Theorem 1.3. (Coercivity implies existence) Let f : R* — R be continuous on all of R*. If
f s coercive, then f has at least one global minimizer.

Proof. Let a € R be chosen so that the set S = {z |f(z) < a} is non-empty. By coercivity,
this set is compact. By Weierstrass’s Theorem, the problem min {f(z) |z € S} has at least
one global solution. Obviously, the set of global solutions to the problem min{f(z) |x € S}
is a global solution to P which proves the result. U

1.2. First-Order Optimality Conditions. This existence result can be quite useful, but
unfortunately it does not give us a constructive test for optimality. That is, we may know
a solution exists, but we still do not have a method for determining whether any given
point may or may not be a solution. We now build such a test on the derivatives of the
objective function f. For this we will assume that f is twice continuously differentiable on
R™ and develop constructible first- and second-order necessary and sufficient conditions for
optimality.

The optimality conditions we consider are built up from those developed in first term
calculus for functions mapping from R to R. The reduction to the one dimensional case
comes about by considering the functions ¢ : R — R given by

¢(t) = f(z + td)
for some choice of x and d in R". The key variational object in this context is the directional
derivative of f at a point z in the direction d given by

ooy — e d (@ ) — f(2)
f(x,d)—lgjgl .

t
When f is differentiable at the point z € R"*, then
f'(a;d) = Vf(z)'d = ¢/(0).
Note that if f'(x;d) < 0, then there must be a ¢ > 0 such that

[z +1d) — f(x)
t

<0 whenever 0<t<t.

In this case, we must have
flz+td) < f(z) whenever 0<t<Tt.

That is, we can always reduce the function value at x by moving in the direction d an
arbitrarily small amount. In particular, if there is a direction d such that f’(z;d) exists with
f'(z;d) < 0, then z cannot be a local solution to the problem mingeg» f(x). Or equivalently,
if z is a local to the problem mingegn f(x), then f'(z;d) > 0 whenever f'(x;d) exists. We
state this elementary result in the following lemma.

Lemma 1.1 (Basic First-Order Optimality Result). Let f : R* — R and let T € R™ be a
local solution to the problem mingegn f(x). The

f'(@;d) >0
for every direction d € R" for which f'(z;d) exists.
We now apply this result to the case in which f : R* — R is differentiable.
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Theorem 1.4. Let f : R* — R be differentiable at a point T € R*. If T is a local minimum
of f, then Vf(T) = 0.

Proof. By Lemma 1.1 we have
0< fl(z;d) =V f(z)"d forall deR".
Taking d = =V f(Z) we get
0< =Vf(@)'VI(@E@) =-IV/@)|* <0
Therefore, Vf(z) = 0. O
When f : R* — R is differentiable, any point € R" satisfying V f(z) = 0 is said to be
a stationary (or, equvalently, critical) point of f. In our next result we link the notions of

coercivity and stationarity.

Theorem 1.5. Let f : R* — R be differentiable on all of R*. If f is coercive, then f has
at least one global minimizer these global minimizers can be found from among the critical

points of f.

Proof. Since differentiability implies continuity, we already know that f has at least one
global minimizer. Differentiabilty implies that this global minimizer is critical. O

This result indicates that one way to find a global minimizer of a coercive differentiable
function is to first find all critical points and then from among these determine those yielding
the smallest function value.

1.3. Second-Order Optimality Conditions. To obtain second-order conditions for op-
timality we must first recall a few properties of the Hessian matrix VZf(z). The calculus
tells us that if f is twice continuously differentiable at a point z € R", then the Hessian
V2f(x) is a symmetric matrix. Perhaps the most noteworthy feature of symmetric matrices
is that they are orthogonally diadonalizable. That is there exists and orthonormal basis of

eigenvectors of V2f(x) , v',v? ..., v™ such that

A 0 0 ... 0

V() = VT O A2 .() 0 v

0 0 oo o A
where A, Ao, ..., A\, are the eigenvalues of V?f(x) and V is the matrix whose columns are
given by their corresponding vectors v', v?, ..., v":

V= [vl,v2,...,v”] .

The symmetric matrix V2f(z) is said to be positive semi-definite if \; > 0, 1 =1,2,...,n

and it is said to be positive definite if \; > 0, + = 1,2,...,n. Thus, in particular, if V?f(x)
is positive definite, then

A"V f(z)d > Amin||d||*  for all d € R",

where A\, is the smallest eigenvalue of V2 f(x).



We now give our main result on second-order necessary and sufficient conditions for opti-
mality in the problem mingeg» f(z). The key tools in the proof are the notions of positive
semi-definiteness and definiteness along with the second-order Taylor series expansion for f
at a given point 7 € R":

L1 fl@)=f@)+ Vi@ (@ -7)+ %(x -2V f(@) (@ - 7) + o||lz — 7|

_ =2
where limM =0.

a7 ||z —7|?
Theorem 1.6. Let f : R* — R be twice continuously differentiable at the point T € R".

(1) (Necessity) If T is a local minimum of f, then Vf(T) = 0 and V2f(T) is positive
semi-definite.

(2) (Sufficiency) If Vf(T) = 0 and V2f(Z) is positive definite, then there is an o > 0
such that f(z) > f(T) + a||lz — Z||* for all z near T.

Proof. (1) We make use of the second order Taylor series expansion (1.1) and the fact
that Vf(Z) = 0 by Theorem 1.4. Given d € R" and t > 0 set z := T + td, plugging
this into (1.1) we find that

f(z+1td) — f(z) o(t?)
t2 t2
since V f(Z) = 0 by Theorem 1.4. Taking the limit as ¢t — 0 we get that

0 < d"V2f(Z)d.

1

Now since d was chosen arbitrarily we have that V2f(T) is positive semi-definite.
(2) The Taylor expansion (1.1) and the hypothesis that V f(Z) = 0 imply that

f@)—f@ 1(@-7z)" (—7)  ollz—=|)

1.2 = V2f(z .
-2 le—a 2ol le—al " -7
If A\pnin > 0 is the smallest eigenvalue of V2 f(Z), choose € > 0 so that
o(llz —Z[1*)| _ Amin
1.3
(-3 EEEERE

whenever ||z — Z|| < e. Then for all ||z — Z|| < € we have from (1.2) and (1.3) that
f(z)— (@)

llz—=[]*

AV

Consequently, if we set o = i)\min, then
f(@) > f(@) +allz — |

whenever ||z — Z|| < e.
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1.4. Convexity. We have now established first-order necessary conditions and second-order
necessary and sufficient conditions. What about first-order sufficiency conditions? For this
we introduce the following definitions.

Definition 1.2. (1) A set C C R is said to be convez if for every x,y € C and X € [0, 1]
one has
1=Nz+XIyeC.
(2) A function f : R* — R is said to be convez if for every two points x1,z, € R* and
A € [0,1] we have

FOzZ 4+ (1= Naxg) < Af(z1) + (1= N) f(x2).

The function f is said to be strictly convez if for every two distinct points x1,xs € R®
and X € [0,1] we have

(1.4) FAzy + (1= Naxg) < Af(z1) + (1 = A) f(z2).
The secant line connecting (z1, f(x1)) and (2, f(x2)) lies above the graph of f.

(%2, f(X2))
f (X1, f (X1))

X1 Axq+ (1 -)\)xz X2

That is, the set
epi (f) ={(z,n) : f(z) < p},
called the epi-graph of f is a convex set. Indeed, it can be shown that the convexity of the
set epi(f) is equivalent to the convexity of the function f. This observation allows us to
extend the definition of the convexity of a function to functions taking potentially infinite
values.

Definition 1.3. A function f : R — R U {+o00} = R is said to be convex if the set
epi(f) = {(z,p) : f(z) < pu} is a convex set. We also define the essential domain of f to
be the set

dom(f) ={z : f(z) < 400} .
We say that f is strictly convez if the strict inequality (1.4) holds whenever x1,zo € dom(f)
are distinct.

ExampPLE: ¢z, ||z, %, 22

Convexity is a very important property in optimization theory as is illustrated in the
following result.



6

Theorem 1.7. Let f : R* — R be convez. If T € R is a local minimum for f, then T is a
global minimum for f.

Proof. Suppose there is a T € R with f(Z) < f(Z). Let ¢ > 0 be such that
f(@) < f(x) whenever |z—7Z| <e
and
e<2z-7| .
Set A := €2 —7Z|) ' <1and z) :=T+ AZ —T). Then ||zy — || < €¢/2 and f(z,) <
(1 =X f(@)+ Af(Z) < f(z). This contradicts the choice of € and so no such 7 exists. O
Strict convexity implies the uniqueness of solutions.

Theorem 1.8. Let f : R* — R be strictly convex. If f has a global minimizer, then it is
UNLQUeE.

Proof. Let ' and z? be distinct global minimizers of f. Then, for A € (0, 1),
F(A =Nzt +22%) < (1= N f(a') + Af(2?) = f(z1)

which contradicts the assumption that z' is a global minimizer. U

If f is a differentiable convex function, much more can be said. We begin with the following
lemma.
Lemma 1.2. Let f : R* — R be convez (not necessarilty differentiable).
(1) Given x,d € R™ the difference quotient
f(z +td) — f(x)
t

is a non-decreasing function of t on (0, +00).
(2) For every x,d € R™ the directional derivative f'(x;d) always erists and is given by

(1.6) Flod) = g LEH D = F(@)

t>0 t
Proof. We assume (1) is true and show (2). Recall that
(1.7) o d) = tim LD = J(@)

10 t

(1.5)

Now if the difference quotient (1.5) is non-decreasing in ¢ on (0, +00), then the limit in (1.7)
is necessarily given by the infimum in (1.6). This infimum always exists and so f'(x;d)
always exists and is given by (1.6).

We now prove (1). Let z,d € R” and let 0 < t; < t5. Then

flo+td) = f(:c-i—(t)tgd)
= 7[(1=(2)) =+ (2) e+ )

< (1-2) @+ (2) fla+tad).



Hence
flx+td) — f(o) < [z +1t2d) — f(2)
t - to '

d

A very important consequence of Lemma 1.2 is the subdifferential inequality. This inequal-
ity is obtained by plugging ¢t = 1 and d = y — z into the right hand side of (1.6) where y is
any other point in R™. This substitution gives the inequality

(1.8) fy) > f(x)+ fl(r;y —x) forall yeR® and z € dom (f) .
The subdifferential inequality immediately yields the following result.

Theorem 1.9 (Convexity and Optimality). Let f : R* — R be convezr (not necessarilty
differentiable) and let T € dom (f). Then the following three statements are equivalent.

(i) Z is a local solution to mingegn f(z).
(ii) f'(z;d) >0 for alld € R™.
(iii) Z is a global solution to mingepn f(z).
Proof. Lemma 1.1 gives the implication (i)=-(ii). To see the implication (ii)=-(iii) first note
that f'(Z;y — %) exists for all y € R® by Lemma 1.2 and then apply the subdifferential
inequality (1.8) to obtain

fy) > f@ + fl(7;y—1) > f(z) forally e R".
The implication (iii)=(i) is obvious. O

If it is further assumed that f is differentiable, then we obtain the following elementary
consequence of Theorem 1.9.

Theorem 1.10. Let f: R* — R be conver and suppose that T € R" is a point at which f is
differentiable. Then T is a global minimum of f if and only if V f(Z) = 0.

As Theorems 1.9 and 1.10 demonstrate, convex functions are very nice functions to deal
with when it comes to optimization theory. Thus it is important that we be able to recognize
when a function is convex. For this reason we give the following result.

Theorem 1.11. Let f : R* — R.

(1) If f is differentiable on R™, then the following statements are equivalent:
(a) f is conver,
(b) f(y) > f(z) + Vf(2)"(y — ) for all z,y € R"
(c) (Vf(z) = Vf(y) (z—y) >0 for all z,y € R".
(2) If f is twice differentiable then f is convex if and only if f is positive semi-definite
forallz € R".

Proof. (a) = (b) If f is convex, then 1.11 holds. By setting ¢ := 1 and d := y —x we obtain
(b).

(b) = (c) Let z,y € R*. From (b) we have
fy) > fl@) + V() (y—2)



and
f@) > fy)+ Vi) (@ —y).
By adding these two inequalities we obtain (c).
(c) = (b) Let z,y € R". By the mean value theorem there exists 0 < A < 1 such
that
F(y) = @) = V(@) (y - )
where x := Ay + (1 — \)z. By hypothesis,

0 < [Vf(za) = VI(@)] (2r— )
= AVf(@:) = V@) (y — x)
Af(y) = f@) = V(@) (y — 2)].

Hence f(y) > £(x) + V £(@)7(y — 7).
(b) = (a) Let z,y € R” and set

o= Arg[gﬁ]w(/\) =[fQAy+ 1= A)z) = (Af(y) + (1= A)f(2))].

We need to show that oo < 0. Since [0, 1] is compact and ¢ is continuous, there is a
A € [0, 1] such that ¢(A\) = a. If A equals zero or one, we are done. Hence we may as
well assume that 0 < A < 1 in which case

0=¢'(\)=Vf(z\)" (y—2)+ f(z) — f(y)

where x, = x + A(y — ), or equivalently
M) = M (z) = V(zn)" (x — z2).
But then
a = f(ex) = (f(2) £ Af(Y) - f(2)))
= f(@) + V(@) (@ —2x) - f(2)
< 0
by (b).

Suppose f is convex and let z,d € R”, then by (b) of Part (1),
flx+td) > f(x) +tVf(z)Td
for all ¢ € R. Replacing the left hand side of this inequality with its second order

Taylor expansion yields the inequality

flx) +tVf(x)Td+ ngW fx)d+o(t?) > f(z) +tVf(x)d
or equivalently
o(t?)
t2

%dtVQ fayd+ ) s

Letting ¢ — 0 yields the inequality
d"V2f(z)d > 0.

Since d was arbitrary, V2 f(z) is positive semi-definite.
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Conversely, if z,y € R", then by the mean value theorem there is a A € (0,1) such
that

Fly) = @)+ V5@l — ) + 5y — 29 f (@) (y — )
where ), = Ay + (1 — \),. Hence
fly) > f(@) + V(2)" (y - 2)

since V2f(z,) is positive semi-definite. Therefore, f is convex by (b) of Part (1).
O

The final characterization of convexity in the above theorem is very useful when it applies.
But it requires one to check when a matrix is positive definite. One approach to this is to
compute the eigenvalues of the Hessian, but this can be a very time consuming procedure.
For this reason, we give the following test for positive definiteness.

Theorem 1.12. Let H € R™" be symmetric. We define the kth principal minor of H,
denoted Ag(H), to be the determinant of the upper left-hand k x k submatriz of H. Then H
is positive definite if and only if Ay(H) >0 fork=1,2,...,n.

Example
Consider the matrix
1 1 —1
H= 1 5 1
-1 1 4

We have

11
15
Therefore, H is positive definite.

1.4.1. More on the Directional Derivative. It is a surprising fact that convex function are
directionally differentiable at every point of their domain in every direction. But this is just
the beginning of the story. The directional derivative of a convex function possess several
other important and surprising properties. We now develop a few of these.

Definition 1.4. Let h: R* — RU {4+o00}. We say that h is positively homogeneous if
h(Ax) = Ah(z) for allz € R and A\ > 0.

We say that h s subadditive if
h(z +y) < h(z) + h(y) foralz,yeR

Finally, we say that h is sublinear if it is both subadditive and sublinear.

There are numerous important examples of sublinear functions (as we shall soon see),
but perhaps the most familiar of these is the norm ||z||. Positive homogeneity is obvious
and subadditivity is simply the triangle inequality. In a certain sense the class of sublinear
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function is a generalization of norms. It is also important to note that sublinear functions
are always convex functions. Indeed, given x,y € dom (h) and 0 < \ < 1,

h(dz+(1—=Ny) < h(Az)+h(1—N)y)
= A(z)+ (1= AN)h(y).

Theorem 1.13. Let f : R* — R U {+o0} be a convexr function. Then at every point

x € dom (f) the directional derivative f'(x;d) is a sublinear function of the d argument, that

is, the function f'(z;-) : R* — RU {400} is sublinear. Thus, in particular, the function

f'(x;+) is a convex function.

Proof. Let € dom (f), d € R*, and A > 0. Then

40 t
_ lim/\f(x +tAd) — f(x)
t10 At
oy Sl (Nd) = f(=)
= Al (1)
= AM'(z;d),

showing that f'(z;-) is positively homogeneous.
Next let di,ds € R*, Then

fl(a;dy +dy) = 1%1 f(‘“‘t(dﬁ;dz))—f(m)

F(3(z + 2tdy) + L(z + 2tdy)) — f(2)

= lim
£10

t
Lf(z + 2tdy) + L f(z + 2tdy) — f(x)
t

< i 2@ 20) = J(@)) + 5 (f (@ + 2dy) = [ ()

-t 7

= lim f(x +2tdy) — f(=) + lim f(z +2tdy) — f(2)
t}0 2 10 5

= flz;dy) + f'(2; do),
showing that f’(z;-) is subadditive and completing the proof. O
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Exercises

(1) Show that the functions
flz1,20) =22 + 23, and  g(z1,20) = 27 + 25

both have a critical point at (z;,z5) = (0,0) with associated Hessian positive semi-
definite. But (0,0) is only a local (global) minimizer for g and not for f.

(2) Find the local minimizers and maximizers for the following functions if they exist:

(a) f(x) =2%+ cosm

(b) f(w1,m) =22 — 4wy + 222+ 7

( ) (xl ) (551"‘552)

(d) ($1,$2,$3) (221 — 22)* + (22 — 23)* + (23 — 1)?

(3) Which of the functions in problem 2 above are convex and why?

(4) If f: R* - R = RU {+o0} is convex, show that the sets lev;(a) = {z : f(z) < a}
are convex sets for every a € R. Let h(z) = z®. Show that the sets lev,(«) are
convex for all «, but the function A is not itself a convex function.

(5) Show that each of the following functions is convex.

(a) f(z)=e"
() f(z1,29,...,1,) = e~ (@ Fo2ttan)
(¢) f(z) =l
(6) Consider the linear equation
Az = b,

where A € R™*™ and b € R™. When n < m it is often the case that this equation
is over-determined in the sense that no solution x exists. In such cases one often
attempts to locate a ‘best’ solution in a least squares sense. That is one solves the
linear least squares problem

1
(lls) : minimize §||Ax — b3

for z. Define f : R* — R by

1
F(@) = 5l Az = b

(a) Show that f can be written as a quadratic function, i.e. a function of the form
1
f(z):= ixTQx —ad'r+a.

(b) What are V f(z) and V2f(z)?

(c) Show that V?f(x) is positive semi-definite.

(d) * Show that a solution to (1ls) must always exist.

(e) * Provide a necessary and sufficient condition on the matrix A (not on the
matrix AT A) under which (lls) has a unique solution and then display this
solution in terms of the data A and b.

€
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(7) Consider the functions
1

flz) = ExTQ:L' —c'x

and .
fi(z) = ExTQ:z: —c'x +to(x),

where ¢ > 0, @ € R™" is positive semi-definite, c € R*, and ¢ : R* - RU {+o0} is
given by

_ —Z?:llnxi ,ifxi>0,l.:]_,2,.,,,n,
b(z) = { +00 , otherwise.

(a) Show that ¢ is a convex function.

(b) Show that both f and f; are convex functions.

c¢) Show that the solution to the problem min f;(x) always exists and is unique.
lassify each of the following functions as either coercive or non-coercive showing

(,y,2) =2+ 9>+ 22 — ayz
(z,y,2) =2* +y* + 22 — 32y — 2
(z,y,2) = z* + y* + 22 — Tay2?
(7,y) = o* +y* — 229°

(,y,2) = log(2?y?2®) —x —y — 2
(z,y,2) = 2% + y? + 2% — sin(zyz)
t
(
(
(

y) =522+ 2xy +y> —x+2y+3
xw:{(x+@+1ﬁ—bg@wm if0<z, 0<y,
’ ~+00, otherwise.
y) = 4€37Y 4 58" +Y’
_ :c—i-%—i—?y—i—é, if0<zx, 0<y,
(d) flo,y) = { ~+00, ! otherwise.
(10) Compute the global minimizers of the functions given in the previous problem if they
exist.



