Solutions to Constrained Optimization Problems

(1) (a) The KKT conditions are

$$(1) 20 \geq e^{x_1} + e^{x_2}, \ 0 \leq x_1$$

$$(2) 0 \leq \lambda, \mu$$

(3)
$$0 = \lambda(e^{x_1} + e^{x_2} - 20), \ 0 = \mu x_1$$

$$(4) 0 = e^{(x_1 - x_2)} + \lambda e^{x_1} - \mu$$

$$0 = -e^{(x_1 - x_2)} + \lambda e^{x_2}$$

Equation (5) implies that $\lambda = e^{(x_1 - 2x_2)} \neq 0$. Therefore, the first complementarity condition in (3) implies that $e^{x_1} + e^{x_2} = 20$. Adding equations (4) and (5) gives

$$0 = \lambda(e^{x_1} + e^{x_2}) - \mu = 20\lambda - \mu,$$

so that $\mu = 20\lambda \neq 0$. Therefore, the second complementarity condition (3) implies that $x_1 = 0$. Hence, $(x_1, x_2) = (0, \log 19)$ is the only KKT point. Note that this is a convex programming problem satisfying the Slater condition and so this KKT point is the unique global solution.

(b) The KKT conditions are

$$(6) 20 \geq e^{x_1} + e^{x_2}, \ 0 \leq x_1$$

$$(7) 0 \leq \lambda, \mu$$

(8)
$$0 = \lambda(e^{x_1} + e^{x_2} - 20), \ 0 = \mu x_1$$

$$0 = -e^{(x_2 - x_1)} + \lambda e^{x_1} - \mu$$

$$(10) 0 = e^{(x_2 - x_1)} + \lambda e^{x_2}$$

By equation (10), $\lambda = -e^{-x_1} < 0$. But this contradicts the requirement that $0 \le \lambda$. Therefore, no KKT point exists. Nonetheless this is also a convex problem satisfying the Slater condition. So what is wrong here?!

No solutions exists. The optimal value is 0 but is not achieved.

(d) The KKT conditions are Ax = b and $x = A^Ty$ for some $y \in \mathbb{R}^m$. Multiplying the second condition through by A gives $b = Ax = AA^Ty$. Since $\operatorname{Nul}(A^T) = \{0\}$ the matrix AA^T is invertable (Why?). Hence $\lambda = (AA^T)^{-1}b$ and $x = A^T(AA^T)^{-1}b$. Since this is a convex problem with a polyhedral constraint region, this unique KKT point is the unique global solution.

- (2) Done in class.
- (3) $\Omega = \{(x_1, x_2)^T \mid x_1^2 \le x_2, \ 0 \le x_2 \}$
- (4) (a) Since Ω is of the form given in equation (1) of the notes, we know that

$$T_{\Omega}(x) \subset \{d \mid A_{i} d \leq 0, \text{ for } i \in I(x), Ed = 0\}.$$

Now given $d \in \{d \mid A_i.d \leq 0, \text{ for } i \in I(x), Ed = 0\}$, consider points of the form x + td for $0 \leq t$. For such points we have

$$A_{i\cdot}(x+td) = A_{i\cdot}x + tA_{i\cdot}d$$

$$\leq A_{i\cdot}x$$

$$< b$$

for all $i \in I(x)$ and $t \ge 0$, and

$$E(x+td) = Ex + tEd$$
$$= Ex$$
$$= h$$

for all $t \geq 0$. For $i \in \{1, \ldots, m\}$ but $i \notin I(x)$, we know that $A_i.x < b$. Hence there is a $\bar{t} > 0$ such that $A_i.(x + td) < b$ for all $0 \leq t \leq \bar{t}$ for all $i \in \{1, \ldots, m\}$ but $i \notin I(x)$. Therefore, d is a feasible direction for Ω and so must be in $T_{\Omega}(x)$.

- (b) We just showed this in Part (a) above.
- (c) The set

$$\bigcup_{\lambda>0}\lambda(\Omega-x)=\{\lambda(y-x)\mid 0\leq \lambda,\ y\in\Omega\}$$

is the set of feasible directions for a convex set since for every $y \in \Omega$ and $0 \le \lambda \le 1$ we have $x + \lambda(y - x) = (1 - \lambda)x + \lambda y \in \Omega$.

(5) Since $\nabla_x(\frac{1}{2}||x-z||) = x-z$, we have from Theorem 4.2 that \bar{x} solves \mathcal{D} if and only if

$$0 \le (\nabla_{x\frac{1}{2}} \|\bar{x} - z\|)^T (x - \bar{x}) = (\bar{x} - z)^T (x - \bar{x}) \quad \forall \ x \in \Omega.$$