Solving LPs
The Simplex Algorithm of George Dantzig

We illustrate a general solution procedure, called the simplex algorithm, by implementing
it on a very simple example. Consider the LP

(0.1) max 5xq + 4y + 33
st. 21 +3x94+ 23 < 5
dx1 + 29+ 223 < 11
3x1+4xy+223 < 8

0 S Z1,T2,73

The first step in our solution procedure is to rewrite the problem so that it looks more like
the problem of solving a system of linear equations. We can then apply our knowledge of
such systems to solving the LP (1.1). In order to do this we rewrite the linear inequality
constraints as linear equations by introducing a new non-negative variable for each inequality:

xy = b —[2x1 + 3wo + x3] >0,
Iy = 11 — [4.T1 —+ 29 + 2£L’3 + .T5] Z 0,
Tg = 8 — [3$1 + 4£E2 + 2£L’3 + .Tﬁ] Z 0.

In addition, we introduce a new variable z for the objective value:
z = 5x1 + 419 + 3x3.

Then all of the information associated with the LP (1.1) can be coded as follows:

2%1 + 3332 +x3 + 24 = 5

4371 + 29 + 2.’1)3 + x5 = 11

(02) 3z + 4:172 + 2.’1)3 + 2 = 8
—Z + 5.’1)1 + 4:172 + 3.’1)3 = 0

0< T1,T2,T3,T4,T5,Te-

The new variables x4, x5, and x4 are called slack variables. This system can also be written

In matrix notation as
0 A I z | _|b
-1 L0 z | |0

where
2 31 1 00 5 5
A=14 1 2|, I=]1010|,b=]11]|,andc=| 4
3 4 2 0 01 8 3



The associated augmented system is

(0.3) [0 Alb}

-1 ¢ 0 0

and is referred to as a simplex tableau for the LP (1.1). Again consider the system

(04) Ty = 5 — 211)1 - 311)2 — T3
Iy = 11—4%1 —.T2—2.T3
Tg = 8 — 311)1 — 4152 - 2.T3

z = bxi;+4xy+ 3x3.

In this system we are representing the variables x4, x5, ¢ and 2z as linear combinations
of the variables z;, x5, and z3. We call this system a dictionary for the LP (1.1) since it
provides a definition for the objective value z and 3 of the variables (where 3 is the number
of slack variables) in terms of the remaining variable. We call this the initial dictionary for
(1.1). The variables that are “defined” in this way are called the basic variables, while the
remaining variables are called nonbasic. The set of all basic variables is called the basis. A
particular solution to this system is easily obtained by setting the nonbasic variables equal
to zero. In this case, we get

6174:5
1'5:11

336:8

Note that the solution

x1

T2

I3 .
(0.5) . | =

Ty

Te

o = 1O O O

is feasible for the extended system (1.2) since all components are non-negative. For this
reason, we call the dictionary (1.4) a feasible dictionary for the LP (1.1).

The grand strategy of the simplex algorithm is to move from one feasible dictionary
representation of the system (1.2) to another while simultaneously increasing the value of
the objective variable z. In the current setting, beginning with the dictionary (1.4) how
might one proceed?

First note that each feasible dictionary identifies one and only one feasible point obtained
by setting all of the nonbasic variables equal to zero. This is how we obtain (1.5). To change
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the feasible point identified in this way, we need to increase the value of one of the non-basic
variables. Note that we cannot decrease the value of a non-basic variable since we wish
to remain feasible, that is, we wish to keep all variables non-negative. Also note that the
coefficient of each of the non-basic variables in the representation of the objective value z in
(1.4) is positive, hence when we increase the value of any one of these variables from zero,
we automatically increase the value of the objective value z. Since the coefficient on z; in
the representation of z is the greatest, we can increase z the fastest by increasing x;.

By how much can we increase x; and still remain feasible? For example, if we increase
x1 to 3 then (1.4) says that z4 = —1, z5 = —1, g = —1 which is not feasible. Note that z4
remains non-negative as long as z; < 5/2, x5 remaining non-negative if x; < 11/4, and zg
remaining non-negative if zo < 8/3. Therefore, the most we can increase z; by and yet keep

all variables non-negative is
5 . [5 11 8
—=min4q -, —, - ¢ .
2 2°4°3
5

If we now increase z5 to 5, then the value of x4 is driven to zero. Hence, we move z; into
the basis and move z, out. We do this with the aid of the equation for z,:

$4:5—2$1—33§2—.’B3
converts to
201 =5 — x4 — 319 — T3

or

5 1 3 1
T = 9 2.’E4 2$2 2$3.

Substituting this expression for z; into the right hand side of (1.4) yields the new dictionary
5 1 3 1

ry = §—§$4—§$2—§.’I)3
5 1 3 1
Iy = 11—4(§—§$4—§$2—§$3>—$2—2$3
= 1+2$4+5$2

5o 1 3 1
Tg — 8§—-3 5—5.’1'4—5372—5.’1'3 —4./172—2333

1 3 1 1

= §+§$4+§$2—§$3
5 1 3 1
z = 5<§—§x4—§xz—§x3)+4x2+3x3
25 5 7 1
= — — =Ty — =T9+ —XT3.

2 2 2 2



Recall that this process is simply Gaussian elimination and so can be performed in a matrix
context on the simplex tableau (1.3). We return to this later in order to obtain a more
efficient computational technique.

We now have a new dictionary

5 1 3 1
ry = 5 - §$4 §I2 — 51‘3
T5 = 1+ 2x4+ 529

1 1 1
Te = =+ sTa+ -Xo— I3

Z = —— —Ts— T2+ x5

which identifies the feasible solution

I g
i) 0
T3 _ 0
Ta o 0
Iy 1
Tg %
and the associated objective value z = % Can we do better? Note that the coefficient of x3

in the representation of z is positive, hence if we increase the value of x3 from zero, we will
increase the value of z. By how much can we increase the value of 3 and yet keep all the
remaining variables non-negative? As before, we can increase x3 by at most

1= min{(5/2)/(1/2), (1/2)/(1/2)}‘

When we do this we drive x4 to zero, so x3 enters the basis and z¢ leaves:

Lo 1,8 1
2353 B 2334 2362 Te
T3 1+3.’L‘4+$2—2$6
o I sm 4 ma — 2mg)
x — — =Ty — —Tg — = T4+ To — 22
1 2 24 22 92 4 2 6
2 —2x4 — 279 + x4
T 1+2.7)4+5332
25 5 7 1
z ?—§$4—§$2+§[1+3$4+$2—2$6]

yielding the dictionary

13—$4—3$2—IE6

r3 = 1+3IE4+$2—2$6
T1 = 2—2x4+4 229 + x¢
rs = 14 2x4+ 229

z = 13—24—329—2x—6
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which identifies the feasible solution

T 2
i) 0
T3 . 1
Ta o 0
Iy 1
g 0

having adjective value z = 13.

Can we do better? NO! This solution is optimal! The coefficient on the variables in the
cost row of the dictionary are all negative, so increasing their value will decrease the value
of the objective.

Let us know review this process using matrix notation. we begin with the simplex tableau

Pivot
column r
!
0 @ 3 1 1 0 0|5 (3)« Pivtrow
4 1 2 0 1 0|1 LU
2 4 2 o0 0 18 8
1 (5) 3 0 0
L3 3 3 0 5
0 -5 0 -2 1 1
0 0 -1 () -Fo 1]}
7 1 5 25
-1 0 -3 53 -5 0 0]-%
1 2 0 2 0 -1]| 2
0 -5 0 -2 1 1
0 -1 1 -3 0 1
-1 0 -3 0 -1 0 —1]|-13

Notice that we have performed the exact same arithmetic operations but in the more efficient
matrix format. Also observe that further streamlining is possible. Since we never really use
the z column, ignore it in our computations. In the future, we will not write this column
when we write the symplex tableaus. But it is useful to remember that it is really there and
can always re-insert it whenever convenient.



We now give our formal definition for a dictionary associated with an LP in standard
form:

P max c z ,where A € R™*™
Ax<b,0<z
Let
n
(Dy) %H=@—§:%%
j=1
n
Z = — Z Cj.’L‘j
j=1
be the defining system for the slack variables x,,,;, 2 = 1,--- ,n and the objective variable

z. A dictionary for P is any system of the form

jEN
z2=2z— Z'c}x]
jEN
where B and N are index sets contained in the set of integers {1,...,n 4+ m} satisfying

(1) B contains m elements,
(2) BONN =0
(3) BUN ={1,2,... ,n+m},

and such that the systems (D;) and (Dg) have identical solution sets. The set {z; : j € B}
is said to be the basis associated with the dictionary (Dp) (sometimes we will refer to the
index set B as the basis for the sake of simplicity), and the variables z;, i € N are said
to be the non-basic variables associated with this dictionary. the point identified by this
dictionary is

.’L’j:() j € N.

The dictionary is said to be feasible if 0 < E for i € N, and it is said to be optimal if ¢; <0
j € N. If the dictionary is feasible, then the point

is said to be a basic feasible solution (BFS) for P.
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There are corresponding notions associated with the simplex tableau. Recall the initial

augmented matrix associated with the system (Dj):
AT b
" 00

(here we have dropped the z column). The matrix

A R b
¢ —yt' z

is said to be a tableau for the linear program P if

(1) the matrix R (called the record matrix) is non-singular with

R 0 ATb] [A R
—yT 1 0 0] | =T

Ny )

and

|,

(2) the columns of the matrix [ A R ] contain the m distinct columns of the m x m

identity matrix.

The variables associated with the columns of the identity correspond to the basic variables.
The tableau is said to be primal feasible if b > 0. It is said to be dual feasible if ¢ < 0 and

0 <. It is said to be optimal if it is both primal and dual feasible.



Exercises

Simplex Algorithm for Problems in Standard Form
with Feasible Origin

Solve the following LPs using the simplex algorithm. All of the problems
below are in standard form and have feasible origin.

1.
maximize 4z + 3y + 2z
subject to + 2z < 2
—x — y + =z <1
r + y + 2z <3
0 < =z, 9y, =z
Solution: (2, 1,0), optimal value = 11.
2.
maximize 4r + 2y + 2z
subjectto x* + 3y — 2z < 3
dr + 2y < 4
x + y + < 2
0 < =z, 9y =
Solution: (1,0, 1), optimal value = 6.
3.
maximize —7x; + 9z + 3x3
subject to  bxy — 4xy — x3 < 10
r1 — I9 S 4
< 1

—3z1 + 4z2 + 3
0 <

Solution: (4,0, 13), optimal value = 11.

oo



maximize 7z;

subject to  x1
45131
25131
31131

+ 6£E2 +
+ 32[22 +
+ 2z —
+ 4z +
+ x2 +
0 < =z,

5ZB3

55[33
2:173
4:173
2£L'3
T2,

— 2:134 +
— 2z4 +
+ x4 +
— 214 +
— x4 +

r3, T4, T5.

Solution: (0,4/3,2/3,5/3,0), optimal value = 8.

3275

2{135

L5
5(12‘5
2335
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