Linear Programming Primer for Math 408

1 Introduction

1.1 What is Linear Programming?

A mathematical optimization problem is one in which some function is either maximized or
minimized relative to a given set of alternatives. The function to be minimized or maximized
is called the objective function and the set of alternatives is called the feasible region (or
constraint region). In this course, the feasible region is always taken to be a subset of R"
(real n-dimensional space) and the objective function is a function from R™ to R.

We further restrict the class of optimization problems that we consider to linear program-
ming problems (or LPs). An LP is an optimization problem over R" wherein the objective
function is a linear function, that is, the objective has the form

C1T1 + Coxo + - - - + CpTy,

for some ¢; € R4 =1,...,n, and the feasible region is the set of solutions to a finite number
of linear inequality and equality constraints, of the form

A Ti + QpTo + -+ ATy < b 1=1,...,5

and
a;1%; + Qoo + -+ + @i, = b; 1=s4+1,...,m.

Linear programming is an extremely powerful tool for addressing a wide range of applied
optimization problems. A short list of application areas is resource allocation, produc-
tion scheduling, warehousing, layout, transportation scheduling, facility location, flight crew
scheduling, parameter estimation, .. ..

1.2 An Example

To illustrate some of the basic features of LP, we begin with a simple two-dimensional
example. In modeling this example, we will review the four basic steps in the development
of an LP model:

1. Determine and label the decision variables.

2. Determine the objective and use the decision variables to write an expression for the
objective function.

3. Determine the ezplicit constraints and write a functional expression for each of them.

4. Determine the tmplicit constraints.



PLASTIC CUP FACTORY

A local family-owned plastic cup manufacturer wants to optimize their production
mix in order to maximize their profit. They produce personalized beer mugs and
champaign glasses. The profit on a case of beer mugs is $25 while the profit on
a case of champaign glasses is $20. The cups are manufactured with a machine
called a plastic extruder which feeds on plastic resins. Each case of beer mugs
requires 20 lbs. of plastic resins to produce while champaign glasses require 12
Ibs. per case. The daily supply of plastic resins is limited to at most 1800 pounds.
About 15 cases of either product can be produced per hour. At the moment the
family wants to limit their work day to 8 hours.

We will model the problem of maximizing the profit for this company as an LP. The
first step in our modeling process is to determine the decision variables. These are the
variables that represent the quantifiable decisions that must be made in order to determine
the daily production schedule. That is, we need to specify those quantities whose values
completely determine a production schedule and its associated profit. In order to determine
these quantities, one can ask the question “If I were the plant manager for this factory, what
must I know in order to implement a production schedule?” The best way to determine
the decision variables is to put oneself in the shoes of the decision maker and then ask the
question “What do I need to know in order to make this thing work?” In the case of the
plastic cup factory, everything is determined once it is known how many cases of beer mugs
and champaign glasses are to be produced each day.

Decision Variables:

B = # of cases of beer mugs to be produced daily.
C = # of cases of champaign glasses to be produced daily.

You will soon discover that the most difficult part of any modeling problem is the de-
termination of decision variables. Once these variables are correctly determined then the
remainder of the modeling process usually goes smoothly.

After specifying the decision variables, one can now specify the problem objective. That
is, one can write an expression for the objective function.

Objective Function:

Maximize profit where profit = 25B + 20C'

The next step in the modeling process is to express the feasible region as the solution set
of a finite collection of linear inequality and equality constraints. We separate this process
into two steps:

1. determine the explicit constraints, and

2. determine the implicit constraints.



The explicit constraints are those that are explicitly given in the problem statement. In the
problem under consideration, there are explicit constraints on the amount of resin and the
number of work hours that are available on a daily basis.

Ezxplicit Constraints:

resin constraint: 208 + 12C < 1800
work hours constraint: =B + -:C < 8.

This problem also has other constraints called implicit constraints. These are constraints
that are not explicitly given in the problem statement but are present nonetheless. Typically
these constraints are associated with “natural” or “common sense” restrictions on the deci-
sion variable. In the cup factory problem it is clear that one cannot have negative cases of
beer mugs and champaign glasses. That is, both B and C' must be non-negative quantities.

Implicit Constraints:

0< B, 0<C.

The entire model for the cup factory problem can now be succinctly stated as

P : max25B + 20C
subject to 20B + 12C < 1800
EB++C < 8

0 < B,C

Since this problem is two dimensional it is possible to provide a graphical solution. The
first step toward a graphical solution is to graph the feasible region. To do this, first graph



20B + 12C = 1800

objective normal n = (2

optimal value = $2625

feasible region

oA+ B
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the line associated with each of the linear inequality constraints. Then determine on which
side of each of these lines the feasible region must lie (don’t forget the implicit constraints!).
Once the correct side is determined it is helpful to put little arrows on the line to remind
yourself of the correct side. Then shade in the resulting feasible region.

The next step is to draw in the vector representing the gradient of the objective function
at the origin. Since the objective function has the form

f(z1,22) = 121 + o,

the gradient of f is the same at every point in R?;

V (@1, 20) = (Cl>.

C2

Recall from calculus that the gradient always points in the direction of increasing function
values. Moreover, since the gradient is constant on the whole space, the level sets of f
associated with different function values are given by the lines perpendicular to the gradient.
Consequently, to obtain the location of the point at which the objective is maximized we
simply set a ruler perpendicular to the gradient and then move the ruler in the direction of
the gradient until we reach the last point (or points) at which the line determined by the
ruler intersects the feasible region. In the case of the cup factory problem this gives the

solution to the LP as (g) = (‘;2)



We now recap the steps followed in the solution procedure given above:

Step 1: Graph each of the linear constraints indication on which side of the constraint the
feasible region must lie. Don’t forget the implicit constraints!

Step 2: Shade in the feasible region.
Step 3: Draw the gradient vector of the objective function.

Step 4: Place a straightedge perpendicular to the gradient vector and move the straightedge
either in the direction of the gradient vector for maximization, or in the opposite direc-
tion of the gradient vector for minimization to the last point for which the straightedge
intersects the feasible region. The set of points of intersection between the straightedge
and the feasible region is the set of solutions to the LP.

The solution procedure described above for two dimensional problems reveals a great deal
about the geometric structure of LPs that remains true in n dimensions. We will explore
this geometric structure more fully as the course evolves. But for the moment, we continue
to study this 2 dimensional LP to see what else can be revealed about the structure of this
problem.

Before leaving this section, we make a final comment on the modeling process described
above. We emphasize that there is not one and only one way to model the Cup Factory
problem, or any problem for that matter. In particular, there are many ways to choose the
decision variables for this problem. Clearly, it is sufficient for the shop manager to know
how many hours each days should be devoted to the manufacture of beer mugs and how
many hours to champaign glasses. From this information everything else can be determined.
For example, the number of cases of beer mugs that get produced is 15 times the number
of hours devoted to the production of beer mugs. Therefore, as you can see there are many
ways to model a given problem. But in the end, they should all point to the same optimal
process.

1.3 Duality Theory

We now briefly discuss how the “hidden hand of the market place” gives rise to a theory of
dual linear programs. Think of the cup factory production process as a black box through
which the resources flow. Raw resources go in one end and exit the other. When they
come out the resources have a different form, but whatever comes out is still comprised of
the entering resources. However, something has happened to the value of the resources by
passing through the black box. The resources have been purchased for one price as they
enter the box and are sold in their new form as they leave. The difference between the
entering and exiting prices is called the profit. Assuming that there is a positive profit the
resources have increased in value as they pass through the production process. The marginal
value of a resource is precisely the increase in the per unit value of the resource due to the
production process.



Let us now consider how the market introduces pressures on the profitability and the
value of the resources available to the market place. We take the perspective of the cup
factory ws the market place. The market place does not want the cup factory to go out of
business. On the other hand, it does not want the cup factory to see a profit. It wants to
keep all the profit for itself and only let the cup factory just break even. It does this by
setting the price of the resources available in the market place. That is, the market sets
the price for plastic resin and labor and it tries to do so in such a way that the cup factory
sees no profit and just breaks even. Since the cup factory is now seeing a profit, the market
must figure out by how much the sale price of resin and labor must be raised to reduce this
profit to zero. This is done by minimizing the value of the available resources over all price
increments that guarantee that the cup factory either loses money or sees no profit from
both of its products. If we denote the per unit price increment for resin by R and that for
labor by L, then the profit for beer mugs is eliminated as long as

1
20R+ —=L >25
+15 2

since the left hand side represents the increased value of the resources consumed in the
production of one case of beer mugs and the right hand side is the current profit on a case
of beer mugs. Similarly, for champaign glasses, the market wants to choose R and L so that

1
12 — L > 20.
R+15 > 20

Now in order to maintain equilibrium in the market place, that is, not drive the cup factory
out of business (since then the market realizes no profit at all), the market chooses R and L
so as to minimize the increased value of the available resources. That is, the market chooses
R and L to solve the problem
D : minimize 1800R + 8L
subject to 20R + £L 25
12R+ &L > 20
0 < R, L

v

This is just another LP. It is called the “dual” to the LP P in which the cup factory tries to

maximize profit. Observe that if (g) is feasible for P and (?) is feasible for D, then
25B+20C < [20R+ £L]B+[12R+ LL]C

R[20B +12C] + L[z B 4+ +C]

< 1800R + 8L.

Thus, the value of the objective in P at a feasible point in P is bounded above by the
objective in D at any feasible point for D. In particular, the optimal value in P is bounded
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above by the optimal value in D. The “strong duality theorem” states that if either of these
problems has a finite optimal value, then so does the other and these values coincide. In
addition, we claim that the solution to D is given by the marginal values for P. That is,

(" = [ 5/8 } is the optimal solution for D. In order to show this we need only show that

L 375/2
R 5/8 |. . T R 5/8
(L) = 3752 is feasible for D and that the value of the objective in D at (L) = 3752
coincides with the value of the objective in P at (2) = (ig) First we check feasibility:
LR
-8 - 2
5 1 375
20- -+ —-—>25
0 8 + 15 2
12-§+i-§>20.
8§ 15 2
Next we check optimality
5 375
25-45420-75 = 2625 = 1800 - §+8-7.

1.4 LPs in Standard Form and Their Duals

Recall that a linear program is a problem of maximization or minimization of a linear func-
tion subject to a finite number of linear inequality and equality constraints. This general
definition leads to an enormous variety of possible formulations. In this section we propose
one fixed formulation for the purposes of developing an algorithmic solution procedure. We
then show that every LP can be recast in this form. We say that an LP is in standard form
if it has the form

P : maximize ci1T1+ CoTo+ -+ Cpy,
subject to a;1x1 + Gpxo + -+ T, < byfori=1,2,...,m
0<gzjforj=1,2,...,n.

Using matrix notation, we can rewrite this LP as

P : maximize ¢z

subject to Az <b
0<zx,

where the inequalities Az < b and 0 < x are to be interpreted componentwise.
Following the results of the previous section on LP duality, we claim that the dual LP to
P is the LP

D : minimize b1y + boyo + - - - + bpYm
subject to ai;y1 + agyo + -+ amiym > cjforj=1,2,...,n
0<y;fori=1,2,....m.
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Again, the statement of this D can be simplified by the use of matrix notation to give the
problem
D : minimize by
subject to ATy > ¢
0<y.

Just as for the cup factory problem, the LPs P and D are related via the Weak Duality
Theorem.

THEOREM: [WEAK DuALITY| If x € R" is feasible for P and y € R™ is feasible for D, then
e <yTAz < b'y.

Thus, if P is unbounded, then D is infeasible, and if D is unbounded, then P is infeasible.

PROOF: Let x € R" be feasible for P and y € R™ be feasible for D. Then
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We caution that the infeasibility of either P or D does not imply the unboundedness of
the other. Indeed, it is possible for both P and D to be infeasible as is illustrated by the
following example.

EXAMPLE:
maximize 2r; — T9
1 — X9 S 1
—r + T2 < =2
0 < 71, 22

The Weak Duality Theorem yields the following elementary corollary.

COROLLARY 1.1 Let Z be feasible for P and ¥ feasible for D if c'z = b’y then T solves P
and i solves D.



PROOF: Let x be any other vector feasible for P. Then, by the WDT,
dr<byg=c"z.

Therefore,
maximize c'z < 'z
subject to Az <b, 0< =z

But Az <b, 0 < Z, so Z solves P. Similarly, if y is any other vector feasible for D, then
Vg=c"z<bly.

Therefore
b'y < minimize b’y
subject to ATy >e¢, 0<y,
so that 7 solves D. u

THEOREM 1.1 (THE STRONG DuALITY THEOREM) If either P or D has a finite optimal

value, then so does the other and these optimal values coincide, and, in addition, optimal
solutions to both P and D exist.

Observe that this result states that the finiteness of the optimal value implies the existence
of a solution. This is not always the case for nonlinear optimization problems. Indeed,
consider the problem

min e”.

TER
This problem has a finite optimal value, namely zero; however, this value is not attained by
any point x € R. That is, it has a finite optimal value, but a solution does not exist. The
existence of solutions when the optimal value is finite is one of the many special properties
of linear programs.

1.4.1 Transformation to Standard Form

Every LP can be transformed to an LP in standard form. This process usually requires a
transformation of variables and occasionally the addition of new variables. In this section
we provide a step-by-step procedure for transforming any LP to one in standard form.

minimization — maximization

To transform a minimization problem to a maximization problem just multiply the
objective function by —1.

linear inequalities




If an LP has an equality constraint of the form
ai1T1 + GaTe + -+ - + AinTp > b;.

This inequality can be transformed to one in standard form by multiplying the inequal-
ity through by —1 to get

—Qi1T1 — QigTy — * -+ — QinTy, < —b;.

linear equation

The linear equation
1T + 0+ ATy = b;

can be written as two linear inequalities
a1+ -+ Qipy < b

and

anTi + -+ QinTn > b;.
The second of these inequalities can be transformed to standard form by multiplying
through by —1.

variables with lower bounds

If a variable z; has lower bound [; which is not zero (I; < z;), one obtains a non-negative
variable w; with the substitution

T; = w; + l,
In this case, the bound /; < z; is equivalent to the bound 0 < w;.

variables with upper bounds

If a variable z; has an upper bound u; (z; < u;) one obtains a non-negative variable
w; with the substitution
Ty = U; — W;.

In this case, the bound z; < u; is equivalent to the bound 0 < w;.

variables with interval bounds

An interval bound of the form /; < x; < u; can be transformed into one non-negativity
constraint and one linear inequality constraint in standard form by making the substi-
tution

In this case, the bounds I; < z; < u; are equivalent to the constraints
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free variables

Sometimes a variable is given without any bounds. Such variables are called free vari-
ables. To obtain standard form every free variable must be replaced by the difference
of two non-negative variables. That is, if x; is free, then we get

T; = U; — V;
with 0 < u; and 0 < ;.

To illustrate the ideas given above, we put the following LP into standard form.

minimize 3z, — 2
subject to —x1 + 6z — 3 + 1L > -3
729 + x4 = 5
T3 + x4 < 2

-1 S$27$3 35,_2S$4S2

First, we rewrite the objective as
maximize — 3z + x,.
Next we replace the first inequality constraint by the constraint
T — 629 + 23 — x4 < 3.
The equality constraint is replaced by the two inequality constraints

7.’1)2 + 14 S 5
—7.7)2 — X4 S —>5.

Observe that the variable z; is free, so we replace it by
T1 =1y —y2 with 0 < 51,0 < gs.
The variable x5 has a non-zero lower bound so we replace it by
To = y3 — 1 with 0 < y3.
The variable x5 is bounded above, so we replace it by
r3 =5 — y4 with 0 < yy.
The variable x4 is bounded below and above so we replace it by

T4 =ys — 2 with 0 < y5 and y; < 4.

11



Putting it all together we get the following LP in standard form:

maximize —-3y; + 3y +
subject to B o— Yo —

0 S Y1,Y2,Y3, Y4, Ys.
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Eixercises
Graphical solutions of two dimensional LPs

1. Sketch the graph of the constraint region for the following LP’s. Then
solve them by sketching the optimal level set of the objective function.

maximize 2z + 3y

subject to -3z + y < 2
dr + 2y < 44
4 — y < 20
—r + 2y < 14
0 < =z, ¥
minimize T + y
subject to —z + y < 3
2 + y < 18
y =2 6
0 <z, y
2. Graph the following function of a by graphically solving the necessary
LPs:
v(a) := maximize 1 + az
subject to 1 — 1z < 4
r1 + x2 < 6
—4:171 + i) S -8

0 S zy, T2
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Exerices
Transformation of LPs to Standard Form

Transform the following LPs to LPs in standard form.

1.
minimize r1 — 1229 — 213
subject to 5x1 — To — 203 = 10
2r1 + r9 — 20x3 > =30
re < 0 , 1< =z3 <4
2.
maximize 3r — 12y + 4z
subject to bx — 10z = 10
2 — y — 17z > —-10
r + y + z < 10
y < 0,1 < z
3.
minimize 4x; — 2x9 + 73
-7 + 3272 — Zs3 Z —1
5:1?2 + 3333 = 5)
1 + ®» + x3 < 1
-1 < 29, =2 < 23 < 2
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