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CHAPTER 6

Optimality Conditions for Unconstrained Problems

1. Unconstrained Optimization

1.1. Existence. Consider the problem of minimizing the function f : Rn → R where f is continuous on all of
Rn:

P min
x∈Rn

f(x).

As we have seen, there is no guarantee that f has a minimum value, or if it does, it may not be attained. To clarify
this situation, we examine conditions under which a solution is guaranteed to exist. Recall that we already have
at our disposal a rudimentary existence result for constrained problems. This is the Weierstrass Extreme Value
Theorem.

Theorem 1.1. (Weierstrass Extreme Value Theorem) Every continuous function on a compact set
attains its extreme values on that set.

We now build a basic existence result for unconstrained problems based on this theorem. For this we make use
of the notion of a coercive function.

Definition 1.1. A function f : Rn → R is said to be coercive if for every sequence {xν} ⊂ Rn for which
‖xν‖ → ∞ it must be the case that f(xν)→ +∞ as well.

Continuous coercive functions can be characterized by an underlying compactness property on their lower level
sets.

Theorem 1.2. (Coercivity and Compactness) Let f : Rn → R be continuous on all of Rn. The function f is
coercive if and only if for every α ∈ R the set {x | f(x) ≤ α} is compact.

Proof. We first show that the coercivity of f implies the compactness of the sets {x | f(x) ≤ α}. We begin
by noting that the continuity of f implies the closedness of the sets {x | f(x) ≤ α}. Thus, it remains only to show
that any set of the form {x | f(x) ≤ α} is bounded. We show this by contradiction. Suppose to the contrary that
there is an α ∈ Rn such that the set S = {x | f(x) ≤ α} is unbounded. Then there must exist a sequence {xν} ⊂ S
with ‖xν‖ → ∞. But then, by the coercivity of f , we must also have f(xν) → ∞. This contradicts the fact that
f(xν) ≤ α for all ν = 1, 2, . . . . Therefore the set S must be bounded.

Let us now assume that each of the sets {x | f(x) ≤ α} is bounded and let {xν} ⊂ Rn be such that ‖xν‖ → ∞.
Let us suppose that there exists a subsequence of the integers J ⊂ N such that the set {f(xν)}J is bounded
above. Then there exists α ∈ Rn such that {xν}J ⊂ {x | f(x) ≤ α}. But this cannot be the case since each
of the sets {x | f(x) ≤ α} is bounded while every subsequence of the sequence {xν} is unbounded by definition.
Therefore, the set {f(xν)}J cannot be bounded, and so the sequence {f(xν)} contains no bounded subsequence,
i.e. f(xν)→∞. �

This result in conjunction with Weierstrass’s Theorem immediately yields the following existence result for the
problem P.

Theorem 1.3. (Coercivity implies existence) Let f : Rn → R be continuous on all of Rn. If f is coercive, then
f has at least one global minimizer.

Proof. Let α ∈ R be chosen so that the set S = {x | f(x) ≤ α} is non-empty. By coercivity, this set is
compact. By Weierstrass’s Theorem, the problem min {f(x) |x ∈ S } has at least one global solution. Obviously,
the set of global solutions to the problem min {f(x) |x ∈ S } is a global solution to P which proves the result. �

Remark 1.1. It should be noted that we only need to know that the coercivity hypothesis is stronger than is
strictly required in order to establish the existence of a solution. Indeed, a global minimizer must exist if there exist

63



64 6. OPTIMALITY CONDITIONS FOR UNCONSTRAINED PROBLEMS

one non-empty compact lower level set. We do not need all of them to be compact. However, in practice, coercivity
is easy to check.

1.2. First-Order Optimality Conditions. This existence result can be quite useful, but unfortunately it
does not give us a constructive test for optimality. That is, we may know a solution exists, but we still do not have
a method for determining whether any given point may or may not be a solution. We now present such a test using
the derivatives of the objective function f . For this we will assume that f is twice continuously differentiable on
Rn and develop constructible first- and second-order necessary and sufficient conditions for optimality.

The optimality conditions we consider are built up from those developed in first term calculus for functions
mapping from R to R. The reduction to the one dimensional case comes about by considering the functions
φ : R→ R given by

φ(t) = f(x+ td)

for some choice of x and d in Rn. The key variational object in this context is the directional derivative of f at a
point x in the direction d given by

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
.

When f is differentiable at the point x ∈ Rn, then

f ′(x; d) = ∇f(x)T d = φ′(0).

Note that if f ′(x; d) < 0, then there must be a t̄ > 0 such that

f(x+ td)− f(x)

t
< 0 whenever 0 < t < t̄ .

In this case, we must have

f(x+ td) < f(x) whenever 0 < t < t̄ .

That is, we can always reduce the function value at x by moving in the direction d an arbitrarily small amount. In
particular, if there is a direction d such that f ′(x; d) exists with f ′(x; d) < 0, then x cannot be a local solution to
the problem minx∈Rn f(x). Or equivalently, if x is a local to the problem minx∈Rn f(x), then f ′(x; d) ≥ 0 whenever
f ′(x; d) exists. We state this elementary result in the following lemma.

Lemma 1.1 (Basic First-Order Optimality Result). Let f : Rn → R and let x ∈ Rn be a local solution to the
problem minx∈Rn f(x). Then

f ′(x; d) ≥ 0

for every direction d ∈ Rn for which f ′(x; d) exists.

We now apply this result to the case in which f : Rn → R is differentiable.

Theorem 1.4. Let f : Rn → R be differentiable at a point x ∈ Rn. If x is a local minimum of f , then
∇f(x) = 0.

Proof. By Lemma 1.1 we have

0 ≤ f ′(x; d) = ∇f(x)T d for all d ∈ Rn .

Taking d = −∇f(x) we get

0 ≤ −∇f(x)T∇f(x) = −‖∇f(x)‖2 ≤ 0.

Therefore, ∇f(x) = 0. �

When f : Rn → R is differentiable, any point x ∈ Rn satisfying ∇f(x) = 0 is said to be a stationary (or,
equivalently, a critical) point of f . In our next result we link the notions of coercivity and stationarity.

Theorem 1.5. Let f : Rn → R be differentiable on all of Rn. If f is coercive, then f has at least one global
minimizer these global minimizers can be found from among the set of critical points of f .

Proof. Since differentiability implies continuity, we already know that f has at least one global minimizer.
Differentiabilty implies that this global minimizer is critical. �

This result indicates that one way to find a global minimizer of a coercive differentiable function is to first find
all critical points and then from among these determine those yielding the smallest function value.
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1.3. Second-Order Optimality Conditions. To obtain second-order conditions for optimality we must first
recall a few properties of the Hessian matrix ∇2f(x). The calculus tells us that if f is twice continuously differ-
entiable at a point x ∈ Rn, then the hessian ∇2f(x) is a symmetric matrix. Symmetric matrices are orthogonally
diagonalizable. That is, there exists and orthonormal basis of eigenvectors of ∇2f(x) , v1, v2, . . . , vn ∈ Rn such that

∇2f(x) = V


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

. . .
...

0 0 . . . . . . λn

V T
where λ1, λ2, . . . , λn are the eigenvalues of ∇2f(x) and V is the matrix whose columns are given by their corre-
sponding vectors v1, v2, . . . , vn:

V =
[
v1, v2, . . . , vn

]
.

It can be shown that ∇2f(x) is positive semi-definite if and only if λi ≥ 0, i = 1, 2, . . . , n, and it is positive definite
if and only if λi > 0, i = 1, 2, . . . , n. Thus, in particular, if ∇2f(x) is positive definite, then

dT∇2f(x)d ≥ λmin ‖d‖2 for all d ∈ Rn,
where λmin is the smallest eigenvalue of ∇2f(x).

We now give our main result on second-order necessary and sufficient conditions for optimality in the problem
minx∈Rn f(x). The key tools in the proof are the notions of positive semi-definiteness and definiteness along with
the second-order Taylor series expansion for f at a given point x ∈ Rn:

(67) f(x) = f(x) +∇f(x)T (x− x) +
1

2
(x− x)T∇2f(x)(x− x) + o(‖x− x‖2)

where

lim
x→x

o(‖x− x‖2)

‖x− x‖2
= 0.

Theorem 1.6. Let f : Rn → R be twice continuously differentiable at the point x ∈ Rn.

(1) (Necessity) If x is a local minimum of f , then ∇f(x) = 0 and ∇2f(x) is positive semi-definite.
(2) (Sufficiency) If ∇f(x) = 0 and ∇2f(x) is positive definite, then there is an α > 0 such that f(x) ≥

f(x) + α‖x− x‖2 for all x near x.

Proof. (1) We make use of the second-order Taylor series expansion (67) and the fact that ∇f(x) = 0
by Theorem 1.4. Given d ∈ Rn and t > 0 set x := x+ td, plugging this into (67) we find that

0 ≤ f(x+ td)− f(x)

t2
=

1

2
dT∇2f(x)d+

o(t2)

t2

since ∇f(x) = 0 by Theorem 1.4. Taking the limit as t→ 0 we get that

0 ≤ dT∇2f(x)d.

Since d was chosen arbitrarily, ∇2f(x) is positive semi-definite.
(2) The Taylor expansion (67) and the hypothesis that ∇f(x) = 0 imply that

(68)
f(x)− f(x)

‖x− x‖2
=

1

2

(x− x)T

‖x− x‖
∇2f(x)

(x− x)

‖x− x‖
+
o(‖x− x‖2)

‖x− x‖2
.

If λmin > 0 is the smallest eigenvalue of ∇2f(x), choose ε > 0 so that

(69)

∣∣∣∣o(‖x− x‖2)

‖x− x‖2

∣∣∣∣ ≤ λmin

4

whenever ‖x− x‖ < ε. Then, for all ‖x− x‖ < ε, we have from (68) and (69) that

f(x)− f(x)

‖x− x‖2
≥ 1

2
λmin +

o(‖x− x‖2)

‖x− x‖2

≥ 1

4
λmin.

Consequently, if we set α = 1
4λmin, then

f(x) ≥ f(x) + α‖x− x‖2
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whenever ‖x− x‖ < ε.
�

In order to apply the second-order sufficient condition one must be able to check that a symmetric matrix is
positive definite. As we have seen, this can be done by computing the eigenvalues of the matrix and checking that
they are all positive. But there is another approach that is often easier to implement using the principal minors of
the matrix.

Theorem 1.7. Let H ∈ Rn×n be symmetric. We define the kth principal minor of H, denoted ∆k(H), to be
the determinant of the upper-left k × k submatrix of H. Then

(1) H is positive definite if and only if ∆k(H) > 0, k = 1, 2, . . . , n.
(2) H is negative definite if and only if (−1)k∆k(H) > 0, k = 1, 2, . . . , n.

Definition 1.2. Let f : Rn → R be continuously differentiable at x. If ∇f(x) = 0, but x is neither a local
maximum or a local minimum, we call x a saddle point for f .

Theorem 1.8. Let f : Rn → R be twice continuously differentiable at x. If ∇f(x) = 0 and ∇2f(x) has both
positive and negative eigenvalues, then x is a saddle point of f .

Theorem 1.9. Let H ∈ Rn×n be symmetric. If H is niether positive definite or negative definite and all of its
principal minors are non-zero, then H has both positive and negative eigenvalues. In this case we say that H is
indefinite.

Example 1.1. Consider the matrix

H =

 1 1 −1
1 5 1
−1 1 4

 .
We have

∆1(H) = 1, ∆2(H) =

∣∣∣∣ 1 1
1 5

∣∣∣∣ = 4, and ∆3(H) = det(H) = 8.

Therefore, H is positive definite.

1.4. Convexity. In the previous section we established first- and second-order optimality conditions. These
conditions we based on only local information and so only refer to properties of local extrema. In this section we
study the notion of convexity which allows us to provide optimality conditions for global solutions.

Definition 1.3. (1) A set C ⊂ Rn is said to be convex if for every x, y ∈ C and λ ∈ [0, 1] one has

(1− λ)x+ λy ∈ C .

(2) A function f : Rn → R is said to be convex if for every two points x1, x2 ∈ Rn and λ ∈ [0, 1] we have

(70) f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

The function f is said to be strictly convex if for every two distinct points x1, x2 ∈ Rn and λ ∈ (0, 1) we
have

(71) f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).

The inequality (70) is equivalent to the statement that the secant line connecting (x1, f(x1)) and (x2, f(x2))
lies above the graph of f on the line segment λx1 + (1− λ)x2, λ ∈ [0, 1].

x  x  + (1 -   )x 2x

2
1(x  , f (x  ))1

2(x  , f (x   ))

λ 1 λ 21
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That is, the set
epi (f) = {(x, µ) : f(x) ≤ µ},

called the epi-graph of f is a convex set. Indeed, it can be shown that the convexity of the set epi (f) is equivalent
to the convexity of the function f . This observation allows us to extend the definition of the convexity of a function
to functions taking potentially infinite values.

Definition 1.4. A function f : Rn → R∪{+∞} = R̄ is said to be convex if the set epi (f) = {(x, µ) : f(x) ≤ µ}
is a convex set. We also define the essential domain of f to be the set

dom (f) = {x : f(x) < +∞} .
We say that f is strictly convex if the strict inequality (71) holds whenever x1, x2 ∈ dom (f) are distinct.

Example 1.2. cTx, ‖x‖, ex, x2

The role of convexity in linking the global and the local in optimization theory is illustrated by the following
result.

Theorem 1.10. Let f : Rn → R̄ be convex. If x ∈ Rn is a local minimum for f , then x is a global minimum
for f .

Proof. Suppose to the contrary that there is a x̂ ∈ Rn with f(x̂) < f(x). Since x is a local solution, there is
an ε > 0 such that

f(x) ≤ f(x) whenever ‖x− x‖ ≤ ε .
Taking ε smaller if necessary, we may assume that

ε < 2‖x− x̂‖ .
Set λ := ε(2‖x− x̂‖)−1 < 1 and xλ := x+ λ(x̂− x). Then ‖xλ− x‖ ≤ ε/2 and f(xλ) ≤ (1− λ)f(x) + λf(x̂) < f(x).
This contradicts the choice of ε and so no such x̂ exists. �

Strict convexity implies the uniqueness of solutions.

Theorem 1.11. Let f : Rn → R̄ be strictly convex. If f has a global minimizer, then it is unique.

Proof. Let x1 and x2 be distinct global minimizers of f . Then, for λ ∈ (0, 1),

f((1− λ)x1 + λx2) < (1− λ)f(x1) + λf(x2) = f(x1) ,

which contradicts the assumption that x1 is a global minimizer. �

If f is a differentiable convex function, much more can be said. We begin with the following lemma.

Lemma 1.2. Let f : Rn → R̄ be convex (not necessarilty differentiable).

(1) Given x, d ∈ Rn the difference quotient

(72)
f(x+ td)− f(x)

t

is a non-decreasing function of t on (0,+∞).
(2) For every x, d ∈ Rn the directional derivative f ′(x; d) always exists and is given by

(73) f ′(x; d) := inf
t>0

f(x+ td)− f(x)

t
.

Proof. We first assume (1) is true and show (2). Recall that

(74) f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

Now if the difference quotient (72) is non-decreasing in t on (0,+∞), then the limit in (74) is necessarily given by
the infimum in (73). This infimum always exists and so f ′(x; d) always exists and is given by (73).

We now prove (1). Let x, d ∈ Rn and let 0 < t1 < t2. Then

f(x+ t1d) = f
(
x+

(
t1
t2

)
t2d
)

= f
[(

1−
(
t1
t2

))
x+

(
t1
t2

)
(x+ t2d)

]
≤

(
1− t1

t2

)
f(x) +

(
t1
t2

)
f(x+ t2d).
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Hence
f(x+ t1d)− f(x)

t1
≤ f(x+ t2d)− f(x)

t2
.

�

A very important consequence of Lemma 1.2 is the subdifferential inequality. This inequality is obtained by
plugging t = 1 and d = y − x into the right hand side of (73) where y is any other point in Rn. This substitution
gives the inequality

(75) f(y) ≥ f(x) + f ′(x; y − x) for all y ∈ Rn and x ∈ dom f .

The subdifferential inequality immediately yields the following result.

Theorem 1.12 (Convexity and Optimality). Let f : Rn → R̄ be convex (not necessarilty differentiable) and let
x ∈ dom f . Then the following three statements are equivalent.

(i) x is a local solution to minx∈Rn f(x).
(ii) f ′(x; d) ≥ 0 for all d ∈ Rn.

(iii) x is a global solution to minx∈Rn f(x).

Proof. Lemma 1.1 gives the implication (i)⇒(ii). To see the implication (ii)⇒(iii) we use the subdifferential
inequality and the fact that f ′(x; y − x) exists for all y ∈ Rn to obtain

f(y) ≥ f(x) + f ′(x; y − x) ≥ f(x) for all y ∈ Rn.

The implication (iii)⇒(i) is obvious. �

If it is further assumed that f is differentiable, then we obtain the following elementary consequence of Theorem
1.12.

Theorem 1.13. Let f : Rn → R be convex and suppose that x ∈ Rn is a point at which f is differentiable.
Then x is a global minimum of f if and only if ∇f(x) = 0.

As Theorems 1.12 and 1.13 demonstrate, convex functions are well suited to optimization theory. Thus, it is
important that we be able to recognize when a function is convex. For this reason we give the following result.

Theorem 1.14. Let f : Rn → R̄.

(1) If f is differentiable on Rn, then the following statements are equivalent:
(a) f is convex,
(b) f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn
(c) (∇f(x)−∇f(y))T (x− y) ≥ 0 for all x, y ∈ Rn.

(2) If f is twice differentiable then f is convex if and only if ∇2f(x) is positive semi-definite for all x ∈ Rn.

Remark 1.2. The condition in Part (c) is called monotonicity.

Proof. (a) ⇒ (b) If f is convex, then 1.14 holds. By setting t := 1 and d := y − x we obtain (b).

(b) ⇒ (c) Let x, y ∈ Rn. From (b) we have

f(y) ≥ f(x) +∇f(x)T (y − x)

and

f(x) ≥ f(y) +∇f(y)T (x− y).

By adding these two inequalities we obtain (c).
(c) ⇒ (b) Let x, y ∈ Rn. By the Mean Value Theorem there exists 0 < λ < 1 such that

f(y)− f(x) = ∇f(xλ)T (y − x)

where xλ := λy + (1− λ)x. By hypothesis,

0 ≤ [∇f(xλ)−∇f(x)]T (xλ − x)
= λ[∇f(xλ)−∇f(x)]T (y − x)
= λ[f(y)− f(x)−∇f(x)T (y − x)].

Hence f(y) ≥ f(x) +∇f(x)T (y − x).



1. UNCONSTRAINED OPTIMIZATION 69

(b) ⇒ (a) Let x, y ∈ Rn and set

α := max
λ∈[0,1]

ϕ(λ) := [f(λy + (1− λ)x)− (λf(y) + (1− λ)f(x))].

We need to show that α ≤ 0. Since [0, 1] is compact and ϕ is continuous, there is a λ ∈ [0, 1] such that
ϕ(λ) = α. If λ equals zero or one, we are done. Hence we may as well assume that 0 < λ < 1 in which
case

0 = ϕ′(λ) = ∇f(xλ)T (y − x) + f(x)− f(y)

where xλ = x+ λ(y − x), or equivalently

λf(y) = λf(x)−∇f(xλ)T (x− xλ).

But then

α = f(xλ)− (f(x) + λ(f(y)− f(x)))
= f(xλ) +∇f(xλ)T (x− xλ)− f(x)
≤ 0

by (b).

2) Suppose f is convex and let x, d ∈ Rn, then by (b) of Part (1),

f(x+ td) ≥ f(x) + t∇f(x)T d

for all t ∈ R. Replacing the left hand side of this inequality with its second-order Taylor expansion yields
the inequality

f(x) + t∇f(x)T d+
t2

2
dT∇2f(x)d+ o(t2) ≥ f(x) + t∇f(x)T d,

or equivalently,

1

2
dt∇2f(x)d+

o(t2)

t2
≥ 0.

Letting t→ 0 yields the inequality

dT∇2f(x)d ≥ 0.

Since d was arbitrary, ∇2f(x) is positive semi-definite.
Conversely, if x, y ∈ Rn, then by the Mean Value Theorem there is a λ ∈ (0, 1) such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(xλ)(y − x)

where xλ = λy + (1− λ)x. Hence

f(y) ≥ f(x) +∇f(x)T (y − x)

since ∇2f(xλ) is positive semi-definite. Therefore, f is convex by (b) of Part (1).

�

Convexity is also preserved by certain operations on convex functions. A few of these are given below.

Theorem 1.15. Let f : Rn → R, h : Rs ×Rk → R and fν : Rn → R be convex functions for ν ∈ N where N is
an arbitrary index set, and let νi ∈ N and λi ≥ 0, i = 1, . . . ,m. Then the following functions are also convex.

(1) φ ◦ f , where φ : R→ R is any non-decreasing function on R.
(2) f(x) :=

∑m
i=1 λifnui

(x) (Non-negative linear combinations)
(3) f(x) := maxν∈N fν(x) (pointwise max)
(4) f(x) := sup

{∑m
i=1 fνi(x

i)
∣∣x =

∑m
i=1 x

i
}

(infimal convolution)

(5) f∗(y) := supx∈Rn [yTx− f(x)] (convex conjugation)
(6) ψ(y) = infx∈Rs h(x, y) (infimal projection)
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1.4.1. More on the Directional Derivative. It is a powerful fact that convex function are directionally differen-
tiable at every point of their domain in every direction. But this is just the beginning of the story. The directional
derivative of a convex function possess several other important and surprising properties. We now develop a few of
these.

Definition 1.5. Let h : Rn → R ∪ {+∞}. We say that h is positively homogeneous if

h(λx) = λh(x) for all x ∈ R and λ > 0.

We say that h is subadditive if
h(x+ y) ≤ h(x) + h(y) for all x, y ∈ R.

Finally, we say that h is sublinear if it is both positively homogeneous and subadditive.

There are numerous important examples of sublinear functions (as we shall soon see), but perhaps the most
familiar of these is the norm ‖x‖. Positive homogeneity is obvious and subadditivity is simply the triangle inequality.
In a certain sense the class of sublinear function is a generalization of norms. It is also important to note that
sublinear functions are always convex functions. Indeed, given x, y ∈ domh and 0 ≤ λ ≤ 1,

h(λx+ (1− λ)y) ≤ h(λx) + h(1− λ)y)

= λh(x) + (1− λ)h(y).

Theorem 1.16. Let f : Rn → R ∪ {+∞} be a convex function. Then at every point x ∈ dom f the directional
derivative f ′(x; d) is a sublinear function of the d argument, that is, the function f ′(x; ·) : Rn → R ∪ {+∞} is
sublinear. Thus, in particular, the function f ′(x; ·) is a convex function.

Remark 1.3. Since f is convex and x ∈ dom f , f ′(x; d) exists for all d ∈ Rn.

Proof. Let x ∈ dom f , d ∈ Rn, and λ > 0. Then

f ′(x;λd) = lim
t↓0

f(x+ tλd)− f(x)

t

= lim
t↓0

λ
f(x+ tλd)− f(x)

λt

= λ lim
(λt)↓0

f(x+ (tλ)d)− f(x)

(λt)

= λf ′(x; d),

showing that f ′(x; ·) is positively homogeneous.
Next let d1, d2 ∈ Rn, Then

f ′(x; d1 + d2) = lim
t↓0

f(x+ t(d1 + d2))− f(x)

t

= lim
t↓0

f( 1
2 (x+ 2td1) + 1

2 (x+ 2td2))− f(x)

t

≤ lim
t↓0

1
2f(x+ 2td1) + 1

2f(x+ 2td2)− f(x)

t

≤ lim
t↓0

1
2 (f(x+ 2td1)− f(x)) + 1

2 (f(x+ 2td2)− f(x))

t

= lim
t↓0

f(x+ 2td1)− f(x)

2t
+ lim

t↓0

f(x+ 2td2)− f(x)

2t

= f ′(x; d1) + f ′(x; d2),

showing that f ′(x; ·) is subadditive and completing the proof. �
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