
CHAPTER 7

Line Search Methods

Let f : Rn → R be given and suppose that xc is our current best estimate of a solution to

P min
x∈Rn

f(x) .

A standard method for improving the estimate xc is to choose a direction of search d ∈ Rn and the compute a step
length t∗ ∈ R so that xc + t∗d approximately optimizes f along the line {x+ td | t ∈ R}. The new estimate for the
solution to P is then xn = xc + t∗d. The procedure for choosing t∗ is called a line search method. If t∗ is taken to
be the global solution to the problem

min
t∈R

f(xc + td) ,

then t∗ is called the Curry step length. However, except in certain very special cases, the Curry step length is far
too costly to compute. For this reason we focus on a few easily computed step lengths. We begin the simplest and
the most commonly used line search method called backtracking.

1. The Basic Backtracking Algorithm

In the backtracking line search we assume that f : Rn → R is differentiable and that we are given a direction d
of strict descent at the current point xc, that is f ′(xc; d) < 0.

Initialization: Choose γ ∈ (0, 1) and c ∈ (0, 1).

Having xc obtain xn as follows:

Step 1: Compute the backtracking stepsize

t∗ := max γν

s.t.ν ∈ {0, 1, 2, . . .} and
f(xc + γνd) ≤ f(xc) + cγνf ′(xc; d).

Step 2: Set xn = xc + t∗d.

The backtracking line search method forms the basic structure upon which most line search methods are built. Due
to the importance of this method, we take a moment to emphasize its key features.

(1) The update to xc has the form

(76) xn = xc + t∗d .

Here d is called the search direction while t∗ is called the step length or stepsize.
(2) The search direction d must satisfy

f ′(xc; d) < 0.

Any direction satisfying this strict inequality is called a direction of strict descent for f at xc. If∇f(xc) 6= 0,
then a direction of strict descent always exists. Just take d = −∇f ′(xc). As we have already seen

f ′(xc;−∇f ′(xc)) = −‖∇f ′(xc)‖
2
.

It is important to note that if d is a direction of strict descent for f at xc, then there is a t > 0 such that

f(xc + td) < f(xc) ∀ t ∈ (0, t).

In order to see this recall that

f ′(xc; d) = lim
t↓0

f(xc + td)− f(xc)

t
.

71

72 7. LINE SEARCH METHODS

Hence, if f ′(xc; d) < 0, there is a t > 0 such that

f(xc + td)− f(xc)

t
< 0 ∀ t ∈ (0, t),

that is

f(xc + td) < f(xc) ∀ t ∈ (0, t).

(3) In Step 1 of the algorithm, we require that the step length t∗ be chosen so that

(77) f(xc + t∗d) ≤ f(xc) + cγνf ′(xc; d).

This inequality is called the Armijo-Goldstein inequality. It is named after the two researchers to first use
it in the design of line search routines (Allen Goldstein is a Professor Emeritus here at the University of
Washington). Observe that this inequality guarantees that

f(xc + t∗d) < f(xc).

For this reason, the algorithm described above is called a descent algorithm. It was observed in point
(2) above that it is always possible to choose t∗ so that f(xc + t∗d) < f(xc). But the Armijo-Goldstein
inequality is a somewhat stronger statement. To see that it too can be satisfied observe that since
f ′(xc; d) < 0,

lim
t↓0

f(xc + td)− f(xc)

t
= f ′(xc; d) < cf ′(xc; d) < 0.

Hence, there is a t > 0 such that

f(xc + td)− f(xc)

t
≤ cf ′(xc; d) ∀ t ∈ (0, t),

that is

f(xc + td) ≤ f(xc) + tcf ′(xc; d) ∀ t ∈ (0, t).

(4) The Armijo-Goldstein inequality is known as a condition of sufficient decrease. It is essential that we
do not choose t∗ too small. This is the reason for setting t∗ equal to the first (largest) member of the
geometric sequence {γν} for which the Armijo-Goldstein inequality is satisfied. In general, we always wish
to choose t∗ as large as possible since it is often the case that some effort was put into the selection of the
search direction d. Indeed, as we will see, for Newton’s method we must take t∗ = 1 in order to achieve
rapid local convergence.

(5) There is a balance that must be struck between taking t∗ as large as possible and not having to evaluating
the function at many points. Such a balance is obtained with an appropriate selection of the parameters
γ and c. Typically one takes γ ∈ [.5, .8] while c ∈ [.001, .1] with adjustments depending on the cost of
function evaluation and degree of nonlinearity.

(6) The backtracking procedure of Step 1 is easy to program. A pseudo-Matlab code follows:

fc = f(xc)
∆f = cf ′(xc; d)

newf = f(xc + d)
t = 1

while newf > fc + t∆f
t = γt

newf = f(xc + td)
endwhile

Point (3) above guarantees that this procedure is finitely terminating.
(7) The backtracking procedure has a nice graphical illustration. Set ϕ(t) = f(xc+td) so that ϕ′(0) = f ′(xc; d).

1. THE BASIC BACKTRACKING ALGORITHM 73

0 γ3 γ2 γ 1

t

ϕ(t)

ϕ(0)+tcϕ′(0)

ϕ(0)+tϕ′(0)

. t∗ = γ3, xn = xc + γ3d.

Before proceeding to a convergence result for the backtracking algorithm, we consider some possible choices for
the search directions d. There are essentially three directions of interest:

(1) Steepest Descent (or Cauchy Direction):

d = −∇f(xc)/ ‖∇f(xc)‖ .
(2) Newton Direction:

d = −∇2f(xc)
−1∇f(xc) .

(3) Newton-Like Direction:
d = −H∇f(xc),

where H ∈ Rn×n is symmetric and constructed to approximate the inverse of ∇2f(xc).

In order to base a descent method on these directions we must have

f ′(xc; d) < 0.

For the Cauchy direction −∇f(xc)/ ‖∇f(xc)‖, this inequality always holds when ∇f(xc) 6= 0;

f ′(xc;−∇f(xc)/ ‖∇f(xc)‖) = −‖∇f(xc)‖ < 0.

On the other hand the Newton and Newton-like directions do not always satisfy this property:

f ′(xc;−H∇f(xc)) = −∇f(xc)
TH∇f(xc).

These directions are directions of strict descent if and only if

0 < ∇f(xc)
TH∇f(xc) .

This condition is related to second-order sufficiency conditions for optimality when H is an approximation to the
inverse of the Hessian.

74 7. LINE SEARCH METHODS

The advantage of the Cauchy direction is that it always provides a direction of strict descent. However, once
the iterates get “close” to a stationary point, the procedure takes a very long time to obtain a moderately accurate
estimate of the stationary point. Most often numerical error takes over due to very small stepsizes and the iterates
behave chaotically.

On the other hand, Newton’s method (and its approximation, the secant method), may not define directions of
strict descent until one is very close to a stationary point satisfying the second-order sufficiency condition. However,
once one is near such a stationary point, then Newton’s method (and some Newton-Like methods) zoom in on the
stationary point very rapidly. This behavior will be made precise when we establish our convergence result from
Newton’s method.

Let us now consider the basic convergence result for the backtracking algorithm.

Theorem 1.1. (Convergence for Backtracking) Let f : Rn → R and x0 ∈ R be such that f is differen-
tiable on Rn with ∇f Lipschitz continuous on an open convex set containing the set {x : f(x) ≤ f(x0)}. Let {xk}
be the sequence satisfying xk+1 = xk if ∇f(xk) = 0; otherwise,

xk+1 = xk + tkd
k, where dk satisfies f ′(xk; dk) < 0,

and tk is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

(i) There is a k0 such that ∇f ′(xk0) = 0.
(ii) f(xk)↘ −∞

(iii) The sequence {
∥∥dk∥∥} diverges (

∥∥dk∥∥→∞).

(iv) For every subsequence J ⊂ N for which {dk : k ∈ J} is bounded, we have

lim
k∈J

f ′(xk; dk) = 0.

Remark 1.1. It is important to note that this theorem says nothing about the convergence of the sequence {xk}.
Indeed, this sequence may diverge. The theorem only concerns the function values and the first-order necessary
condition for optimality.

Before proving this Theorem, we first consider some important corollaries concerning the Cauchy and Newton
search directions. Each corollary assumes that the hypotheses of Theorem 1.1 hold.

Corollary 1.1.1. If the sequences {dk} and {f(xk)} are bounded, then

lim
k→∞

f ′(xk; dk) = 0.

Proof. The hypotheses imply that either (i) or (iv) with J = N occurs in Theorem 1.1. Hence, lim
k→∞

f ′(xk; dk) =

0. �

Corollary 1.1.2. If dk = −∇f ′(xk)/
∥∥∇f(xk)

∥∥ is the Cauchy direction for all k, then every accumulation

point, x, of the sequence {xk} satisfies ∇f(x) = 0.

Proof. The sequence {f(xk)} is decreasing. If x is any accumulation point of the sequence {xk}, then we
claim that f(x) is a lower bound for the sequence {f(xk)}. Indeed, if this were not the case, then for some k0 and
ε > 0

f(xk) + ε < f(x)

for all k > k0 since {f(xk)} is decreasing. But x is a cluster point of {xk} and f is continuous. Hence, there is a

k̂ > k0 such that

|f(x)− f(xk̂)| < ε/2.

But then
f(x) <

ε

2
+ f(xk̂) and f(xk̂) + ε < f(x).

Hence,

f(xk̂) + ε <
ε

2
+ f(xk̂), or

ε

2
< 0.

This contradiction implies that {f(xk)} is bounded below by f(x). But then the sequence {f(xk)} is bounded so
that Corollary 1.1.1 applies. That is,

0 = lim
k→∞

f ′
(
xk;
−∇f(xk)

‖∇f(xk)‖

)
= lim
k→∞

−
∥∥∇f(xk)

∥∥ .

1. THE BASIC BACKTRACKING ALGORITHM 75

Since ∇f is continuous, ∇f(x) = 0. �

Corollary 1.1.3. Let us further assume that f is twice continuously differentiable and that there is a β > 0
such that, for all u ∈ Rn, β ‖u‖2 < uT∇2f(x)u on {x : f(x) ≤ f(x0)}. If the Basic Backtracking algorithm is
implemented using the Newton search directions,

dk = −∇2f(xk)−1∇f(xk),

then every accumulation point, x, of the sequence {xk} satisfies ∇f(x) = 0.

Proof. Let x be an accumulation point of the sequence {xk} and let J ⊂ N be such that xk
J−→x. Clearly,

{xk : k ∈ J} is bounded. Hence, the continuity of ∇f and ∇2f , along with the Weierstrass Compactness Theorem,
imply that the sets {∇f(xk) : k ∈ J} and {∇2f(xk) : k ∈ J} are also bounded. Let M1 be a bound on the values
{
∥∥∇f(xk)

∥∥ : k ∈ J} and let M2 be an upper bound on the values {
∥∥∇2f(xk)

∥∥ : k ∈ J}. Recall that by hypotheses

β ‖u‖2 is a uniform lower bound on the values {uT∇2f(xk)u} for every u ∈ Rn. Take u = dk to obtain the bound

β
∥∥dk∥∥2 ≤ ∇f(xk)T∇2f(xk)−1∇f(xk) ≤

∥∥dk∥∥∥∥∇f(xk)
∥∥ ,

and so ∥∥dk∥∥ ≤ β−1M1 ∀ k ∈ J.
Therefore, the sequence {dk : k ∈ J} is bounded. Moreover, as in the proof of Corollary 1.1.2, the sequence {f(tk)}
is also bounded. On the other hand,∥∥∇f(xk)

∥∥ =
∥∥∇2f(xk)dk

∥∥ ≤M2

∥∥dk∥∥ ∀ k ∈ J.
Therefore,

M−12

∥∥∇f(xk)
∥∥ ≤ ∥∥dk∥∥ ∀ k ∈ J.

Consequently, Theorem 1.1 Part (iv) implies that

0 = lim
k∈J
|f ′(xk; dk)|

= lim
k∈J
|∇f(xk)T∇2f(xk)−1∇f(xk)|

≥ lim
k∈J

β
∥∥dk∥∥2

≥ lim
k∈J

βM−22

∥∥∇f(xk)
∥∥2

= βM−22 ‖∇f(x)‖2.

Therefore, ∇f(x) = 0. �

Proof of Theorem 1.1: We assume that none of (i), (ii), (iii), and (iv) hold and establish a contradiction.
Since (i) does not occur, ∇f(xk) 6= 0 for all k = 1, 2, Since (ii) does not occur, the sequence {f(xk)} is

bounded below. Since {f(xk)} is a bounded decreasing sequence in R, we have f(xk)↘ f for some f . In particular,
(f(xk+1) − f(xk)) → 0. Next, since (iii) and (iv) do not occur, there is a subsequence J ⊂ N and a vector d such

that dk
J−→ d and

sup
k∈J

f ′(xk; dk) =: β < 0.

The Armijo-Goldstein inequality combined with the fact that (f(xk+1)− f(xk))→ 0, imply that

tkf
′(xk; dk)→ 0.

Since f ′(xk; dk) ≤ β < 0 for k ∈ J , we must have tk
J−→ 0. With no loss in generality, we assume that tk < 1 for all

k ∈ J . Hence,

(78) cγ−1tkf
′(xk; dk) < f(xk + tkγ

−1dk)− f(xk)

for all k ∈ J due to Step 1 of the line search and the fact that τk < 1. By the Mean Value Theorem, there exists
for each k ∈ J a θk ∈ (0, 1) such that

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)

76 7. LINE SEARCH METHODS

where
x̂n := (1− θk)xk + θk(xk + tkγ

−1dk)
= xk + θktkγ

−1dk.

Now, since ∇f is Lipschitz continuous, we have

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)

= tkγ
−1f ′(xk; dk) + tkγ

−1[f ′(x̂k; dk)− f ′(xk; dk)]

= tkγ
−1f ′(xk; dk) + tkγ

−1[∇f(x̂k)−∇f(xk)]T dk

≤ tkγ
−1f ′(xk; dk) + tkγ

−1L
∥∥x̂k − xk∥∥∥∥dk∥∥

= tkγ
−1f ′(xk; dk) + L(tkγ

−1)2θk
∥∥dk∥∥2 .

Combining this inequality with inequality (78) yields the inequality

ctkγ
−1f ′(xk; dk) < tkγ

−1f ′(xk; dk) + L(tkγ
−1)2θk

∥∥dk∥∥2 .
By rearranging and then substituting β for f ′(xk; dk) we obtain

0 < (1− c)β + (tkγ
−1)L ‖δk‖2 ∀ k ∈ J.

Now taking the limit over k ∈ J , we obtain the contradiction

0 ≤ (1− c)β < 0.

�

2. The Wolfe Conditions

We now consider a couple of modifications to the basic backtracking line search that attempt to better approximate
an exact line-search (Curry line search), i.e. the stepsize tk is chosen to satisfy

f(xk + tkd
k) = min

t∈R
f(xk + tdk).

In this case, the first-order optimality conditions tell us that 0 = ∇f(xk + tkd
k)T dk. The Wolfe conditions try to

combine the Armijo-Goldstein sufficient decrease condition with a condition that tries to push ∇f(xk + tkd
k)T dk

either toward zero, or at least to a point where the search direction dk is less of a direction of descent. To describe
these line search conditions, we take parameters 0 < c1 < c2 < 1.

Weak Wolfe Conditions

f(xk + tkd
k) ≤ f(xk) + c1tkf

′(xk; dk)(79)

c2f
′(xk; dk) ≤ f ′(xk + tkd

k; dk) .(80)

Strong Wolfe Conditions

f(xk + tkd
k) ≤ f(xk) + c1tkf

′(xk; dk)(81)

|f ′(xk + tkd
k; dk)| ≤ c2|f ′(xk; dk)| .(82)

The weak Wolfe condition (80) tries to make dk less of a direction of descent (and possibly a direction of ascent)
at the new point, while the strong Wolfe condition tries to push the directional derivative in the direction dk closer
to zero at the new point. Imposing one or the other of the Wolfe conditions on a line search procedure has become
standard practice for optimization software based on line search methods.

We now give a result showing that there exists stepsizes satisfying the weak Wolfe conditions. A similar result
(with a similar proof) holds for the strong Wolfe conditions.

Lemma 2.1. Let f : Rn → R be continuously differentiable and suppose that x, d ∈ Rn are such that the set
{f(x+ td) : t ≥ 0} is bounded below and f ′(x; d) < 0, then for each 0 < c1 < c2 < 1 the set{

t

∣∣∣∣ t > 0, f ′(x+ td; d) ≥ c2f ′(x; d), and
f(x+ td) ≤ f(x) + c1tf

′(x; d)

}
has non–empty interior.

2. THE WOLFE CONDITIONS 77

Proof. Set φ(t) = f(x+ td)− (f(x) + c1tf
′(x; d)). Then φ(0) = 0 and φ′(0) = (1− c1)f ′(x; d) < 0. So there

is a t̄ > 0 such that φ(t) < 0 for t ∈ (0, t̄). Moreover, since f ′(x; d) < 0 and {f(x + td) : t ≥ 0} is bounded
below, we have φ(t) → +∞ as t ↑ ∞. Hence, by the continuity of f , there exists t̂ > 0 such that φ(t̂) = 0. Let
t∗ = inf

{
t̂
∣∣ 0 ≤ t, φ(t̂) = 0

}
. Since φ(t) < 0 for t ∈ (0, t̄), t∗ > 0 and by continuity φ(t∗) = 0. By Rolle’s theorem

(or the mean value theorem) there must exist t̃ ∈ (0, t∗) with φ′(t̃) = 0. That is,

∇f(x+ t̃d)T d = c1∇f(x)T d > c2∇f(x)T d.

From the definition of t∗ and the fact that t̃ ∈ (0, t∗), we also have

f(x+ td)− (f(x) + c1t̃∇f(x)T d) < 0 .

The result now follows from the continuity of f and ∇f . �

We now describe a bisection method that either computes a stepsize satisfying the weak Wolfe conditions or
sends the function values to −∞. Let x and d in Rn be such that f ′(x; d) < 0.

A Bisection Method for the Weak Wolfe Conditions

Initialization: Choose 0 < c1 < c2 < 1, and set α = 0, t = 1, and β = +∞.

Repeat
If f(x+ td) > f(x) + c1tf

′(x; d),
set β = t and reset t = 1

2 (α+ β).
Else if f ′(x+ td; d) < c2f

′(x; d),
set α = t and reset

t =

{
2α, if β = +∞

1
2 (α+ β), otherwise.

Else, STOP.
End Repeat

Lemma 2.2. Let f : Rn → R be continuously differentiable and suppose that x, d ∈ Rn are such that f ′(x; d) < 0.
Then one of the following two possibilities must occur in the Bisection Method for the Weak Wolfe Condition
described above.

(i) The procedure terminates finitely at a value of t for which the weal Wolfe conditions are satisfied.
(ii) The procedure does not terminate finitely, the parameter β is never set to a finite value, the parameter

α becomes positive on the first iteration and is doubled in magnitude at every iteration thereafter, and
f(x+ td) ↓ −∞.

Proof. Let us suppose that the procedure does not terminate finitely. If the parameter β is never set to a
finite value, then it must be the case that that α becomes positive on the first iteration (since we did not terminate)
and is doubled on each subsequent iteration with

f(x+ αd) ≤ f(x) + c1αf
′(x; d).

But then f(x+ td) ↓ −∞ since f ′(x; d) < 0. That is, option (ii) above occurs. Hence, we may as well assume that β
is eventually finite and the procedure is not finitely terminating. For the sake of clarity, let us index the bounds and
trial steps by iteration as follows: αk < tk < βk, k = 1, 2, Since β is eventually finite, the bisection procedure
guarantees that there is a t̄ > 0 such that

(83) αk ↑ t̄, tk → t̄, and βk ↓ t̄ .

If αk = 0 for all k, then t̄ = 0 and

f(x+ tkd)− f(x)

tk
− c1f ′(x; d) > 0 ∀k.

But then, taking the limit in k, we obtain f ′(x; d) ≥ c1f
′(x; d), or equivalently, 0 > (1− c1)f ′(x; d) ≥ 0 which is a

contradiction. Hence, we can assume that eventually αk > 0.

78 7. LINE SEARCH METHODS

We now have that the sequences {αk}, {tk}, and {βk} are infinite with (83) satisfied, and there is a k0 such
that 0 < αk < tk < βk <∞ for all k ≥ k0. By construction, we know that for all k > k0

f(x+ αkd) ≤ f(x) + c1αkf
′(x; d)(84)

f(x) + c1βkf
′(x; d) < f(x+ βkd)(85)

f ′(x+ αkd; d) < c2f
′(x; d) .(86)

Taking the limit in k in (86) tells us that

(87) f ′(x+ t̄d; d) ≤ c2f ′(x; d) .

Adding (84) and (85) together and using the Mean Value Theorem gives

c1(βk − αk)f ′(x; d) ≤ f(x+ βkd)− f(x+ αkd) = (βk − αk)f ′(x+ t̂kd; d) ∀ k > k0,

where αk ≤ t̂k ≤ βk. Dividing by (βk − αk) > 0 and taking the limit in k gives c1f
′(x; d) ≤ f ′(x + t̄d; d) which

combined with (87) yields the contradiction f ′(x + t̄d; d) ≤ c2f
′(x; d) < c1f

′(x; d) ≤ f ′(x + t̄d; d) . Consequently,
option (i) above must occur if (ii) does not. �

A global convergence result for a line search routine based on the Weak Wolfe conditions now follows.

Theorem 2.1. Let f : Rn → R, x0 ∈ Rn, and 0 < c1 < c2 < 1. Assume that ∇f(x) exists and is Lipschitz
continuous on an open set containing the set

{
x
∣∣ f(x) ≤ f(x0)

}
. Let {xν} be a sequence initiated at x0 and generated

by the following algorithm:

Step 0: Set k = 0.
Step 1: Choose dk ∈ Rn such that f ′(xk; dk) < 0.

If no such dk exists, then STOP.
First-order necessary conditions for optimality are satisfied at xk.

Step 2: Let tk be a stepsize satisfying the Weak Wolfe conditions (79) and (80).
If no such tk exists, then STOP.
The function f is unbounded below.

Step 3: Set xk+1 = xk + tkd
k, reset k = k + 1, and return to Step 1.

One of the following must occur:

(i) The algorithm terminates finitely at a first-order stationary point for f .
(ii) For some k the stepsize selection procedure generates a sequence of trial stepsizes tkν ↑ +∞ such that

f(xk + tkνd
k)→ −∞.

(iii) f(xk) ↓ −∞.

(iv)

∞∑
k=0

∥∥∇f(xk)
∥∥2 cos2 θk < +∞, where cos θk =

∇f(xk)T dk

‖∇f(xk)‖ ‖dk‖
for all k = 1, 2,

Proof. We assume that (i), (ii), and (iii) do not occur and show that (iv) occurs. Since (i) and (ii) do not
occur the sequence {xν} is infinite and f ′(xk; dk) < 0 for all k = 1, 2, Since (ii) does not occur, the weak
Wolfe conditions are satisfied at every iteration. The condition (79) implies that the sequence {f(xk)} is strictly
decreasing. In particular, this implies that {xν} ⊂

{
x
∣∣ f(x) ≤ f(x0)

}
. The condition (80) implies that

(c2 − 1)∇f(xk)T dk ≤ (∇f(xk+1)−∇f(xk))T dk

for all k. Combining this with the Lipschitz continuity of ∇f on an open neighborhood of
{
x
∣∣ f(x) ≤ f(x0)

}
, gives

(c2 − 1)∇f(xk)T dk ≤ (∇f(xk+1)−∇f(xk))T dk ≤ Ltk
∥∥dk∥∥2 .

Hence

tk ≥
c2 − 1

L

∇f(xk)T dk

‖dk‖2
> 0.

Plugging this into (79) give the inequality

f(xk+1) ≤ f(xk)− c1
1− c2
L

(∇f(xk)T dk)2

‖dk‖2
= f(xk)− c1

1− c2
L

∥∥∇f(xk)
∥∥2 cos2 θk.

2. THE WOLFE CONDITIONS 79

Setting c = c1
1−c2
L and summing over k gives

f(xk+1) ≤ f(x0)− c
k∑
ν=0

‖∇f(xν)‖2 cos2 θν .

Since (iii) does not occur, we can take the limit in k and obtain
∞∑
ν=0

‖∇f(xν)‖2 cos2 θν < +∞ .

�

If the function f is bounded below and the algorithm does not terminate finitely, then Part (iv) of this theorem
states that ∥∥∇f(xk)

∥∥ cos2 θk → 0 .

Hence, if the search directions dk are chosen so that there is a δ > 0, independent of the iteration k, such that
cos θk < −δ for all k, then it must be the case that

∥∥∇f(xk)
∥∥→ 0 so that every cluster point of the sequence {xk}

is a first-order stationary point for f . For example, we have the following corollary to the theorem.

Corollary 2.1.1. Let f and {xk} be as in the theorem, and let {Bk} be a sequence of symmetric positive
definite matrices for which there exists λ̄ > λ > 0 such that

(88) λ ‖u‖2 ≤ uTBku ≤ λ̄ ‖u‖2 ∀u ∈ Rn and k = 1, 2,

Let us further assume that f is bounded below. If the search directions dk are given by

dk = −Bk∇f(xk) ∀ k = 1, 2, . . . ,

then ∇f(xk)→ 0.

Proof. It is easily shown (see exercises) that the condition (88) implies that the eigenvalues of the sequence
{Bk} are uniformly lower bounded by λ and uniformly upper bounded by λ̄. In particular, this implies that

λ ‖u‖ ≤ ‖Bku‖ ≤ λ̄ ‖u‖ ∀u ∈ Rn and k = 1, 2, . . .

(see exercises). Hence for all k

cos θk =
∇f(xk)T dk

‖∇f(xk)‖ ‖dk‖

= − ∇f(xk)TBk∇f(xk)

‖∇f(xk)‖ ‖Bk∇f(xk)‖

≤ −
λ
∥∥∇f(xk)

∥∥2
‖∇f(xk)‖ ‖Bk∇f(xk)‖

≤ −
λ
∥∥∇f(xk)

∥∥2
‖∇f(xk)‖ λ̄ ‖∇f(xk)‖

= −λ/λ̄
< 0 .

Therefore ∇f(xk)→ 0. �

A possible choice for the matrices Bk in the above result is Bk = I for all k. This essentially gives the method
of steepest descent.

	Chapter 1. Introduction
	Chapter 2. Review of Matrices and Block Structures
	1. Rows and Columns
	2. Matrix Multiplication
	3. Block Matrix Multiplication
	4. Gauss-Jordan Elimination Matrices and Reduction to Reduced Echelon Form
	5. Some Special Square Matrices
	6. The LU Factorization
	7. Solving Equations with the LU Factorization
	8. The Four Fundamental Subspaces and Echelon Form

	Chapter 3. The Linear Least Squares Problem
	1. Applications
	2. Optimality in the Linear Least Squares Problem
	3. Orthogonal Projection onto a Subspace
	4. Minimal Norm Solutions to Ax=b
	5. Gram-Schmidt Orthogonalization, the QR Factorization, and Solving the Normal Equations

	Chapter 4. Optimization of Quadratic Functions
	1. Eigenvalue Decomposition of Symmetric Matrices
	2. Optimality Properties of Quadratic Functions
	3. Minimization of a Quadratic Function on an Affine Set
	4. The Principal Minor Test for Positive Definiteness
	5. The Cholesky Factorizations
	6. Linear Least Squares Revisited
	7. The Conjugate Gradient Algorithm

	Chapter 5. Elements of Multivariable Calculus
	1. Norms and Continuity
	2. Differentiation
	3. The Delta Method for Computing Derivatives
	4. Differential Calculus
	5. The Mean Value Theorem

	Chapter 6. Optimality Conditions for Unconstrained Problems
	1. Unconstrained Optimization

	Chapter 7. Line Search Methods
	1. The Basic Backtracking Algorithm
	2. The Wolfe Conditions

	Index

