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CHAPTER 8

Search Directions for Unconstrained Optimization

In this chapter we study the choice of search directions used in our basic updating scheme

xk+1 = xk + tkd
k .

for solving

P min
x∈Rn

f(x).

All of the search directions considered can be classified as Newton-like since they are all of the form

dk = −Hk∇f(xk),

whereHk is a symmetric n×nmatrix. IfHk = µkI for all k, the resulting search directions a a scaled steepest descent
direction with scale factors µk. More generally, we choose Hk to approximate ∇2f(xk)−1 in order to approximate
Newton’s method for optimization. The Newton is important since it possesses rapid local convergence properties,
and can be shown to be scale independent. We precede our discussion of search directions by making precise a
useful notion of speed or rate of convergence.

1. Rate of Convergence

We focus on notions of quotient rates convergence, or Q-convergence rates. Let {xν} ⊂ Rn and x ∈ Rn be such
that xν → x. We say that xν → x at a linear rate if

lim sup
ν→∞

∥∥xν+1 − x
∥∥

‖xν − x‖
< 1 .

The convergence is said to be superlinear if this limsup is 0. The convergence is said to be quadratic if

lim sup
ν→∞

∥∥xν+1 − x
∥∥

‖xν − x‖2
<∞ .

For example, given γ ∈ (0, 1) the sequence {γν} converges linearly to zero, but not superlinearly. The sequence

{γν2} converges superlinearly to 0, but not quadratically. Finally, the sequence {γ2ν} converges quadratically to
zero. Superlinear convergence is much faster than linear convergences, but quadratic convergence is much, much
faster than superlinear convergence.

2. Newton’s Method for Solving Equations

Newton’s method is an iterative scheme designed to solve nonlinear equations of the form

(89) g(x) = 0,

where g : Rn → Rn is assumed to be continuously differentiable. Many problems of importance can be posed in
this way. In the context of the optimization problem P, we wish to locate critical points, that is, points at which
∇f(x) = 0. We begin our discussion of Newton’s method in the usual context of equation solvng.

Assume that the function g in (89) is continuously differentiable and that we have an approximate solution
x0 ∈ Rn. We now wish to improve on this approximation. If x is a solution to (89), then

0 = g(x) = g(x0) + g′(x0)(x− x0) + o‖x− x0‖.
Thus, if x0 is “close” to x, it is reasonable to suppose that the solution to the linearized system

(90) 0 = g(x0) + g′(x0)(x− x0)

is even closer. This is Newton’s method for finding the roots of the equation g(x) = 0. It has one obvious pitfall.
Equation (90) may not be consistent. That is, there may not exist a solution to (90).
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84 8. SEARCH DIRECTIONS FOR UNCONSTRAINED OPTIMIZATION

For the sake of the present argument, we assume that (3) holds, i.e. g′(x0)−1 exists. Under this assumption
(90) defines the iteration scheme,

(91) xk+1 := xk − [g′(xk)]−1g(xk),

called the Newton iteration. The associated direction

(92) dk := −[g′(xk)]−1g(xk).

is called the Newton direction. We analyze the convergence behavior of this scheme under the additional assumption
that only an approximation to g′(xk)−1 is available. We denote this approximation by Jk. The resulting iteration
scheme is

(93) xk+1 := xk − Jkg(xk).

Methods of this type are called Newton-Like methods.

Theorem 2.1. Let g : Rn → Rn be differentiable, x0 ∈ Rn, and J0 ∈ Rn×n. Suppose that there exists
x, x0 ∈ Rn, and ε > 0 with

∥∥x0 − x∥∥ < ε such that

(1) g(x) = 0,
(2) g′(x)−1 exists for x ∈ B(x; ε) := {x ∈ Rn : ‖x− x‖ < ε} with

sup{‖g′(x)−1‖ : x ∈ B(x; ε)] ≤M1

(3) g′ is Lipschitz continuous on c`B(x; ε) with Lipschitz constant L, and
(4) θ0 := LM1

2 ‖x
0 − x‖ + M0K < 1 where K ≥ ‖(g′(x0)−1 − J0)y0‖, y0 := g(x0)/‖g(x0)‖, and M0 =

max{‖g′(x)‖ : x ∈ B(x; ε)}.
Further suppose that iteration (93) is initiated at x0 where the Jk’s are chosen to satisfy one of the following
conditions;

(i) ‖(g′(xk)−1 − Jk)yk‖ ≤ K,
(ii) ‖(g′(xk)−1 − Jk)yk‖ ≤ θk1K for some θ1 ∈ (0, 1),

(iii) ‖(g′(xk)−1 − Jk)yk‖ ≤ min{M3‖xk − xk−1‖,K}, for some M2 > 0, or
(iv) ‖(g′(xk)−1 − Jk)yk‖ ≤ min{M2‖g(xk)‖,K}, for some M3 > 0,

where for each k = 1, 2, . . . , yk := g(xk)/
∥∥g(xk)

∥∥.
These hypotheses on the accuracy of the approximations Jk yield the following conclusions about the rate of

convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xk → x two step quadratically.
(d) If (iv) holds, then xk → x quadratically.

Proof. We begin by inductively establishing the basic inequalities

(94) ‖xk+1 − x‖ ≤ LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − Jk)g(xk)‖,

and

(95) ‖xk+1 − x‖ ≤ θ0‖xk − x‖

as well as the inclusion

(96) xk+1 ∈ B(x; ε)

for k = 0, 1, 2, . . . . For k = 0 we have

x1 − x = x0 − x− g′(x0)−1g(x0) +
[
g′(x0)−1 − J0

]
g(x0)

= g′(x0)−1
[
g(x)− (g(x0) + g′(x0)(x− x0))

]
+
[
g′(x0)−1 − J0

]
g(x0),
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since g′(x0)−1 exists by the hypotheses. Consequently, the hypothese (1)–(4) plus the quadratic bound lemma
imply that ∥∥xk+1 − x

∥∥ ≤
∥∥g′(x0)−1

∥∥∥∥g(x)−
(
g(x0) + g′(x0)(x− x0)

)∥∥
+
∥∥(g′(x0)−1 − J0

)
g(x0)

∥∥
≤ M1L

2

∥∥x0 − x∥∥2 +K
∥∥g(x0)− g(x)

∥∥
≤ M1L

2

∥∥x0 − x∥∥2 +M0K
∥∥x0 − x∥∥

≤ θ0
∥∥x0 − x∥∥ < ε,

whereby (94) – (96) are established for k = 0.
Next suppose that (94) – (96) hold for k = 0, 1, . . . , s − 1. We show that (94) – (96) hold at k = s. Since

xs ∈ B(x, ε), hypotheses (2)–(4) hold at xs, one can proceed exactly as in the case k = 0 to obtain (94). Now if
any one of (i)–(iv) holds, then (i) holds. Thus, by (94), we find that∥∥xs+1 − x

∥∥ ≤ M1L
2 ‖x

s − x‖2 +
∥∥(g′(xs)−1 − Js)g(xs)

∥∥
≤
[
M1L
2 θs0

∥∥x0 − x∥∥+M0K
]
‖xs − x‖

≤
[
M1L
2

∥∥x0 − x∥∥+M0K
]
‖xs − x‖

= θ0 ‖xs − x‖ .

Hence
∥∥xs+1 − x

∥∥ ≤ θ0 ‖xs − x‖ ≤ θ0ε < ε and so xs+1 ∈ B(x, ε). We now proceed to establish (a)–(d).
(a) This clearly holds since the induction above established that∥∥xk+1 − x

∥∥ ≤ θ0 ∥∥xk − x∥∥ .
(b) From (94), we have ∥∥xk+1 − x

∥∥ ≤ LM1

2

∥∥xk − x∥∥2 +
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x∥∥2 + θk1K
∥∥g(xk)

∥∥
≤

[
LM1

2
θk0
∥∥x0 − x∥∥+ θk1M0K

] ∥∥xk − x∥∥
Hence xk → x superlinearly.
(c) From (94) and the fact that xk → x, we eventually have∥∥xk+1 − x

∥∥ ≤ LM1

2

∥∥xk − x∥∥2 +
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x∥∥2 +M2

∥∥xk − xk−1∥∥ ∥∥g(xk)
∥∥

≤
[
LM1

2

∥∥xk − x∥∥+M0M2

[∥∥xk−1 − x∥∥+
∥∥xk − x∥∥]] ∥∥xk − x∥∥

≤
[
LM1

2
θ0
∥∥xk−1 − x∥∥+M0M2(1 + θ0)

∥∥xk−1 − x∥∥]
×θ0

∥∥xk−1 − x∥∥
=

[
LM1

2
θ0 +M0M2(1 + θ0)

]
θ0
∥∥xk−1 − x∥∥2 .

Hence xk → x two step quadratically.
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(d) Again by (94) and the fact that xk → x, we eventually have∥∥xk+1 − x
∥∥ ≤ LM1

2

∥∥xk − x∥∥2 +
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x∥∥2 +M2

∥∥g(xk)
∥∥2

≤
[
LM1

2
+M2M

2
0

] ∥∥xk − x∥∥2 .

�

Note that the conditions required for the approximations to the Jacobian matrices g′(xk)−1 given in (i)–(ii) do
not imply that Jk → g′(x)−1. The stronger conditions

(i)′
∥∥g′(xk)−1 − Jk

∥∥ ≤ ∥∥g′(x0)−1 − J0
∥∥,

(ii)′
∥∥g′(xk+1)−1 − Jk+1

∥∥ ≤ θ1 ∥∥g′(xk)−1 − Jk
∥∥ for some θ1 ∈ (0, 1),

(iii)′
∥∥g′(xk)−1 − Jk

∥∥ ≤ min{M2

∥∥xk+1 − xk
∥∥ ,∥∥g′(x0)−1 − J0

∥∥} for some M2 > 0, or

(iv)′ g′(xk)−1 = Jk,

which imply the conditions (i) through (iv) of Theorem 2.1 respectively, all imply the convergence of the inverse
Jacobian approximates to g′(x)−1. The conditions (i)′–(iv)′ are less desirable since they require greater expense
and care in the construction of the inverse Jacobian approximates.

3. Newton’s Method for Minimization

We now translate the results of previous section to the optimization setting. The underlying problem is

P min
x∈Rn

f(x) .

The Newton-like iterations take the form

xk+1 = xk −Hk∇f(xk),

where Hk is an approximation to the inverse of the Hessian matrix ∇2f(xk).

Theorem 3.1. Let f : Rn → R be twice continuously differentiable, x0 ∈ Rn, and H0 ∈ Rn×n. Suppose that

(1) there exists x ∈ Rn and ε >
∥∥x0 − x∥∥ such that f(x) ≤ f(x) whenever ‖x− x‖ ≤ ε,

(2) there is a δ > 0 such that δ ‖z‖22 ≤ zT∇2f(x)z for all x ∈ B(x, ε),
(3) ∇2f is Lipschitz continuous on cl (B) (x; ε) with Lipschitz constant L, and

(4) θ0 := L
2δ

∥∥x0 − x∥∥ + M0K < 1 where M0 > 0 satisfies zT∇2f(x)z ≤ M0 ‖z‖22 for all x ∈ B(x, ε) and

K ≥ ‖(∇2f(x0)−1 −H0)y0‖ with y0 = ∇f(x0)/
∥∥∇f(x0)

∥∥.

Further, suppose that the iteration

(97) xk+1 := xk −Hk∇f(xk)

is initiated at x0 where the Hk’s are chosen to satisfy one of the following conditions:

(i)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ K,

(ii)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ θk1K for some θ1 ∈ (0, 1),

(iii)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ min{M2

∥∥xk − xk−1∥∥ ,K}, for some M2 > 0, or

(iv)
∥∥(∇2f(xk)−1 −Hk)yk

∥∥ ≤ min{M3

∥∥∇f(xk)
∥∥ ,K}, for some M3 > 0,

where for each k = 1, 2, . . . yk := ∇f(xk)/
∥∥∇f(xk)

∥∥.
These hypotheses on the accuracy of the approximations Hk yield the following conclusions about the rate of

convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xk → x two step quadratically.
(d) If (iv) holds, then xk → x quadradically.
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To more fully understand the convergence behavior described in this theorem, let us examine the nature of
the controling parameters L, M0, and M1. Since L is a Lipschitz constant for ∇2f it loosely corresponds to a
bound on the third–order behavior of f . Thus the assumptions for convergence make implicit demands on the third
derivative. The constant δ is a local lower bound on the eigenvalues of ∇2f near x. That is, f behaves locally
as if it were a strongly convex function (see exercises) with modulus δ. Finally, M0 can be interpreted as a local
Lipschitz constant for ∇f and only plays a role when ∇2f is approximated inexactly by Hk’s.

We now illustrate the performance differences between the method of steepest descent and Newton’s method
on a simple one dimensional problem. Let f(x) = x2 + ex. Clearly, f is a strongly convex function with

f(x) = x2 + ex

f ′(x) = 2x+ ex

f ′′(x) = 2 + ex > 2

f ′′′(x) = ex.

If we apply the steepest descent algorithm with backtracking (γ = 1/2, c = 0.01) initiated at x0 = 1, we get the
following table

k xk f(xk) f ′(xk) s
0 1 .37182818 4.7182818 0
1 0 1 1 0
2 −.5 .8565307 −0.3934693 1
3 −.25 .8413008 0.2788008 2
4 −.375 .8279143 −.0627107 3
5 −.34075 .8273473 .0297367 5
6 −.356375 .8272131 −.01254 6
7 −.3485625 .8271976 .0085768 7
8 −.3524688 .8271848 −.001987 8
9 −.3514922 .8271841 .0006528 10
10 −.3517364 .827184 −.0000072 12

If we apply Newton’s method from the same starting point and take a unit step at each iteration, we obtain a
dramatically different table.

x f ′(x)
1 4.7182818
0 1
−1/3 .0498646

−.3516893 .00012
−.3517337 .00000000064

In addition, one more iteration gives |f ′(x5)| ≤ 10−20. This is a stunning improvement in performance and shows
why one always uses Newton’s method (or an approximation to it) whenever possible.

Our next objective is to develop numerically viable methods for approximating Jacobians and Hessians in
Newton-like methods.

4. Matrix Secant Methods

Let us return to the problem of finding x ∈ Rn such that g(x) = 0 where g : Rn → Rn is continuously
differentiable. In this section we consider Newton-Like methods of a special type. Recall that in a Newton-Like
method the iteration scheme takes the form

(98) xk+1 := xk − Jkg(xk),

where Jk is meant to approximate the inverse of g′(xk). In the one dimensional case, a method proposed by the
Babylonians 3700 years ago is of particular significance. Today we call it the secant method:

(99) Jk =
xk − xk−1

g(xk)− g(xk−1)
.
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With this approximation one has

g′(xk)−1 − Jk =
g(xk−1)− [g(xk) + g′(xk)(xk−1 − xk)]

g′(xk)[g(xk−1)− g(xk)]
.

Near a point x∗ at which g′(x∗) 6= 0 one can use the MVT to show there exists an α > 0 such that

α ‖x− y‖ ≤ ‖g(x)− g(y)‖ .
Consequently, by the Quadratic Bound Lemma,∥∥g′(xk)−1 − Jk

∥∥ ≤ L
2

∥∥xk−1 − xk∥∥2
α ‖g′(xk)‖ ‖xk−1 − xk‖

≤ K
∥∥xk−1 − xk∥∥

for some constant K > 0 whenever xk and xk−1 are sufficiently close to x∗. Therefore, by our convergence Theorem
for Newton Like methods, the secant method is locally two step quadratically convergent to a non–singular solution
of the equation g(x) = 0. An additional advantage of this approach is that no extra function evaluations are required
to obtain the approximation Jk.

4.0.2. Matrix Secant Methods for Equations. Unfortunately, the secant approximation (99) is meaningless if the
dimension n is greater than 1 since division by vectors is undefined. But this can be rectified by multiplying (99)
on the right by (g(xk−1)− g(xk)) and writing

(100) Jk(g(xk)− g(xk−1)) = xk − xk−1.
Equation (100) is called the Quasi-Newton equation (QNE), or matrix secant equation (MSE), at xk. Here the
matrix Jk is unknown, but is required to satisfy the n linear equations of the MSE. These equations determine an
n dimensional affine manifold in Rn×n. Since Jk contains n2 unknowns, the n linear equations in (100) are not
sufficient to uniquely determine Jk. To nail down a specific Jk further conditions on the update Jk must be given.
What conditions should these be?

To develop sensible conditions on Jk, let us consider an overall iteration scheme based on (98). For convenience,
let us denote J−1k by Bk (i.e. Bk = J−1k ). Using the Bk’s, the MSE (100) becomes

(101) Bk(xk − xk−1) = g(xk)− g(xk−1).

At every iteration we have (xk, Bk) and compute xk+1 by (98). Then Bk+1 is constructed to satisfy (101). If Bk
is close to g′(xk) and xk+1 is close to xk, then Bk+1 should be chosen not only to satisfy (101) but also to be as
“close” to Bk as possible. With this in mind, we must now decide what we mean by “close”. From a computational
perspective, we prefer “close” to mean easy to compute. That is, Bk+1 should be algebraically close to Bk in the
sense that Bk+1 is only a rank 1 modification of Bk. Since we are assuming that Bk+1 is a rank 1 modification to
Bk, there are vectors u, v ∈ Rn such that

(102) Bk+1 = Bk + uvT .

We now use the matrix secant equation (101) to derive conditions on the choice of u and v. In this setting, the
MSE becomes

Bk+1s
k = yk,

where
sk := xk+1 − xk and yk := g(xk+1)− g(xk) .

Multiplying (??) by sk gives

yk = Bk+1s
k = Bks

k + uvT sk .

Hence, if vT sk 6= 0, we obtain

u =
yk −Bksk

vT sk

and

(103) Bk+1 = Bk +

(
yk −Bksk

)
vT

vT sk
.

Equation (103) determines a whole class of rank one updates that satisfy the MSE where one is allowed to choose
v ∈ Rn as long as vT sk 6= 0. If sk 6= 0, then an obvious choice for v is sk yielding the update

(104) Bk+1 = Bk =

(
yk −Bksk

)
sk
T

sk
T
sk

.
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This is known as Broyden’s update. It turns out that the Broyden update is also analytically close.

Theorem 4.1. Let A ∈ Rn×n, s, y ∈ Rn, s 6= 0. Then for any matrix norms ‖·‖ and ‖·‖2 such that

‖AB‖ ≤ ‖A‖ ‖B‖2
and ∥∥∥∥vvTvT v

∥∥∥∥
2

≤ 1,

the solution to

(105) min{‖B −A‖ : Bs = y}

is

(106) A+ = A+
(y −As)sT

sT s
.

In particular, (106) solves (105) when ‖·‖ is the `2 matrix norm, and (106) solves (105) uniquely when ‖·‖ is the
Frobenius norm.

Proof. Let B ∈ {B ∈ Rn×n : Bs = y}, then

‖A+ −A‖ =

∥∥∥∥ (y −As)sT

sT s

∥∥∥∥ =

∥∥∥∥(B −A)
ssT

sT s

∥∥∥∥
≤ ‖B −A‖

∥∥∥∥ssTsT s
∥∥∥∥
2

≤ ‖B −A‖ .

Note that if ‖·‖2 = ‖·‖2, then ∥∥∥∥vvTvT v

∥∥∥∥
2

= sup

{∥∥∥∥vvTvT v
x

∥∥∥∥
2

∣∣∣∣ ‖x‖2 = 1

}
= sup

{√
(vTx)2

‖v‖2

∣∣∣∣∣ ‖x‖2 = 1

}
= 1,

so that the conclusion of the result is not vacuous. For uniqueness observe that the Frobenius norm is strictly
convex and ‖A ·B‖F ≤ ‖A‖F ‖B‖2. �

Therefore, the Broyden update (104) is both algebraically and analytically close to Bk. These properties indicate
that it should perform well in practice and indeed it does.

Algorithm: Broyden’s Method

Initialization: x0 ∈ Rn, B0 ∈ Rn×n

Having (xk, Bk) compute (xk+1, Bx+1) as follows:

Solve Bks
k = −g(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk+1)− g(xk)

Bk+1 : = Bk +
(yk −Bksk)sk

T

sk
T
sk

.

We would prefer to write the Broyden update in terms of the matrices Jk = B−1k so that we can write the step

computation as sk = −Jkg(xk) avoiding the need to solve an equation. To obtain the formula for Jk we use the the
following important lemma for matrix inversion.

Lemma 4.1. (Sherman-Morrison-Woodbury) Suppose A ∈ Rn×n, U ∈ Rn×k, V ∈ Rn×k are such that both A−1

and (I + V TA−1U)−1 exist, then

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1
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The above lemma verifies that if B−1k = Jk exists and sk
T
Jky

k = sk
T
B−1k yk 6= 0, then

(107) Jk+1 =

[
Bk +

(yk −Bksk)sk
T

sk
T
sk

]−1
= B−1k +

(sk −B−1k yk)sk
T
B−1k

sk
T
B−1k y

= Jk +
(sk − Jkyk)sk

T
Jk

sk
T
Jky

.

In this case, it is possible to directly update the inverses Jk. It should be cautioned though that this process can

become numerically unstable if |skTJkyk| is small. Therefore, in practise, the value |skTJkyk| must be monitored
to avoid numerical instability.

Although we do not pause to establish the convergence rates here, we do give the following result due to Dennis
and Moré (1974).

Theorem 4.2. Let g : Rn → Rn be continuously differentiable in an open convex set D ⊂ Rn. Assume that
there exists x∗ ∈ Rn and r, β > 0 such that x∗ + rB ⊂ D, g(x∗) = 0, g′(x∗)−1 exists with ‖g′(x∗)−1‖ ≤ β, and g′

is Lipschitz continuous on x∗ + rB with Lipschitz constant γ > 0. Then there exist positive constants ε and δ such
that if ‖x0 − x∗‖2 ≤ ε and ‖B0 − g′(x0)‖ ≤ δ, then the sequence {xk} generated by the iteration[

xk+1 := xk + sk where sk solves 0 = g(xk) +Bks

Bk+1 := Bk +
(yk−Bksk)sTk

sTk s
k where yk = g(xk+1)− g(xk)

is well-defined with xk → x∗ superlinearly.

4.0.3. Matrix Secant Methods for Minimization. We now extend these matrix secant ideas to optimization,
specifically minimization. The underlying problem we consider is

P : minimize
x∈Rn

f(x) ,

where f : Rn → R is assumed to be twice continuously differentiable. In this setting, we wish to solve the equation
∇f(x) = 0 and the MSE (101) becomes

(108) Hk+1y
k = sk ,

where sk := xk+1 − xk and
yk := ∇f(xk+1)−∇f(xk).

Here the matrix Hk is intended to be an approximation to the inverse of the hessian matrix ∇2f(xk). Writing
Mk = H−1k , a straightforward application of Broyden’s method gives the update

Mk+1 = Mk +
(yk −Mks

k)sk
T

sk
T
sk

.

However, this is unsatisfactory for two reasons:

(1) Since Mk approximates ∇2f(xk) it must be symmetric.
(2) Since we are minimizing, then Mk must be positive definite to insure that sk = −M−1k ∇f(xk) is a direction

of descent for f at xk.

To address problem 1 above, one could return to equation (103) an find an update that preserves symmetry.
Such an update is uniquely obtained by setting

v = (yk −Mks
k).

This is called the symmetric rank 1 update or SR1. Although this update can on occasion exhibit problems with
numerical stability, it has recently received a great deal of renewed interest. The stability problems occur whenever

(109) vT sk = (yk −Mks
k)T ss

has small magnitude. The inverse SR1 update is given by

Hk+1 = Hk +
(sk −Hky

k)(sk −Hky
k)T

(sk −Hkyk)T yk

which exists whenever (sk −Hky
k)T yk 6= 0.

We now approach the question of how to update Mk in a way that addresses both the issue of symmetry and
positive definiteness while still using the Broyden updating ideas. Given a symmetric positive definite matrix M
and two vectors s and y, our goal is to find a symmetric positive definite matrix M̄ such that M̄s = y. Since M
is symmertic and positive definite, there is a non-singular n × n matrix L such that M = LLT . Indeed, L can be
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chosen to be the lower triangular Cholesky factor of M . If M is also symmetric and positive definite then there is
a matrix J ∈ Rn×n such that M = JJT . The MSE (??) implies that if

(110) JT s = v

then

(111) Jv = y.

Let us apply the Broyden update technique to (111), J , and L. That is, suppose that

(112) J = L+
(y − Lv)vT

vT v
.

Then by (110)

(113) v = JT s = LT s+
v(y − Lv)T s

vT v
.

This expression implies that v must have the form

v = αLT s

for some α ∈ R. Substituting this back into (113) we get

αLT s = LT s+
αLT s(y − αLLT s)T s

α2sTLLT s
.

Hence

(114) α2 =

[
sT y

sTMs

]
.

Consequently, such a matrix J satisfying (113) exists only if sT y > 0 in which case

J = L+
(y − αMs)sTL

αsTMs
,

with

α =

[
sT y

sTMs

]1/2
,

yielding

(115) M = M +
yyT

yT s
− MssTM

sTMs
.

Moreover, the Cholesky factorization for M can be obtained directly from the matrices J . Specifically, if the QR
factorization of JT is JT = QR, we can set L = R yielding

M = JJT = RTQTQR = LL
T
.

The formula for updating the inverses is again given by applying the Sherman-Morrison-Woodbury formula to
obtain

(116) H = H +
(s+Hy)T yssT

(sT y)2
− HysT + syTH

sT y
,

where H = M−1. The update (115) is called the BFGS update and (116) the inverse BFGS update. The letter
BFGS stand for Broyden, Flethcher, Goldfarb, and Shanno.

We have shown that beginning with a symmetric positive definite matrix Mk we can obtain a symmetric
and positive definite update Mk+1 that satisfies the MSE Mk+1sk = yk by applying the formula (115) whenever

sk
T
yk > 0. We must now address the question of how to choose xk+1 so that sk

T
yk > 0. Recall that

y = yk = ∇f(xk+1)−∇f(xk)

and

sk = xk+1 − xk = tkd
k ,

where

dk = −tkHk∇f(xk)
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is the matrix secant search direction and tk is the stepsize. Hence

yk
T
sk = ∇f(xk+1)T sk −∇f(xk)T sk

= tk(∇f(xk + tkdk)T dk −∇f(xk)T dk) ,

where dk := −Hk∇f(xk). Since Hk is positive definite the direction dk is a descent direction for f at xk and so

tk > 0. Therefore, to insure that sk
T
yk > 0 we need only show that tk > 0 can be choosen so that

(117) ∇f(xk + tkd
k)T dk ≥ β∇f(xk)T dk

for some β ∈ (0, 1) since in this case

∇f(xk + tkdk)T dk −∇f(xk)T dk ≥ (β − 1)∇f(xk)T dk > 0.

But this precisely the second condition in the weak Wolfe conditions with β = c2. Hence a successful BFGS
update can always be obtained. The BFGS update and is currently considered the best matrix secant update for
minimization.

BFGS Updating

σ :=

√
sk
T
yk

ŝk := sk/σ

ŷk := yk/σ

Hk+1 := Hk + (ŝk −Hkŷ
k)(ŝk)T + ŝk(ŝk −Hkŷ

k)T − (ŝk −Hkŷ
k)T ŷkŝk(ŝk)T
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