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CHAPTER 7

Optimality Conditions for Constrained Optimization

1. First–Order Conditions

In this section we consider first–order optimality conditions for the constrained problem

P : minimize f0(x)
subject to x ∈ Ω,

where f0 : Rn → R is continuously differentiable and Ω ⊂ Rn is closed and non-empty. The first step in the analysis
of the problem P is to derive conditions that allow us to recognize when a particular vector x is a solution, or local
solution, to the problem. For example, when we minimize a function of one variable we first take the derivative and
see if it is zero. If it is, then we take the second derivative and check that it is positive. If this is also true, then we
know that the point under consideration is a local minimizer of the function. Of course, the presence of constraints
complicates this kind of test.

To understand how an optimality test might be derived in the constrained case, let us first suppose that we
are at a feasible point x and we wish to find a better point x̃. That is, we wish to find a point x̃ such that x̃ ∈ Ω
and f(x̃) < f(x). As in the unconstrained case, one way to do this is to find a direction d in which the directional
derivative of f in the direction d is negative: f ′(x; d) < 0. We know that for such directions we can reduce the
value of the function by moving away from the point x in the direction d. However, moving in such a direction may
violate feasibility. That is, it may happen that x + td /∈ Ω regardless of how small we take t > 0. To avoid this
problem, we consider the notion of a feasible direction.

Definition 1.1. [Feasible Directions]
Given a subset Ω of Rn and a point x ∈ Ω, we say that a direction d ∈ Rn is a feasible direction for Ω at x if there
is a t > 0 such that x+ td ∈ Ω for all t ∈ [0, t].

Theorem 1.1. If x is a local solution to the problem P, then f ′(x; d) ≥ 0 for all feasible directions d for Ω at
x for which f ′(x; d) exists.

Proof. The proof is a straightforward application of the definitions. If the result were false, then there would
be a direction of descent for f at x that is also a feasible direction for Ω at x. But then moving a little bit in this
direction both keeps us in Ω and strictly reduces the value of f . This contradicts the assumption that x is a local
solution. Therefore, the result must be true. �

Unfortunately, this result is insufficient in many important cases. The insufficiency comes from the dependence
on the notion of feasible direction. For example, if

Ω = {(x1, x2)T : x2
1 + x2

2 = 1},

then the only feasible direction at any point of Ω is the zero direction. Hence, regardless of the objective function
f and the point x ∈ Ω, we have that f ′(x; d) ≥ 0 for every feasible direction to Ω at x. In this case, Theorem 1.1
has no content.

To overcome this deficiency we introduce a general notion of tangency that considers all directions d pointing
into Ω at x ∈ Ω in a limiting sense. Define the tangent cone to Ω at a point x ∈ Ω to be the set of limiting directions
obtained from sequences in Ω that converge to x. Specifically, the tangent cone is given by

T (x |Ω) := {d : ∃ τi ↘ 0 and {xi} ⊂ Ω, with xi → x, such that τ−1
i (xi − x)→ d}.

Example 1.1. (1) If Ω = {x : Ax = b}, where A ∈ Rm×n and b ∈ Rm, then T (x |Ω) = Nul (A) for
every x ∈ Ω.
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74 7. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION

Reason: Let x ∈ Ω. Note that if d ∈ Nul (A), then for every t ≥ 0 we have A(x + td) =
Ax+ tAd = Ax = b so that d ∈ T (x |Ω). Since d ∈ Nul (A) was chosen arbitrarily, this implies
that Nul (A) ⊂ T (x |Ω). Hence we only need to establish the reverse inclusion to verify the
equivalence of these sets.
Let d ∈ T (x |Ω). Then, by definition, there are sequences ti ↓ 0 and {xi} ⊂ Ω with xi → x such
that di → d where di = t−1

i (xi − x), i = 1, 2, . . . . Note that

Adi = t−1
i A(xi − x) = t−1

i [Axi −Ax] = t−1
i [b− b] = 0 ∀ i = 1, 2, . . . .

Therefore, Ad = limi→∞Adi = 0 so that d ∈ Nul (A). Since d was chosen arbitrarily from
T (x |Ω), we have T (x |Ω) ⊂ Nul (A) which proves the equivalence.

(2) If Ω = {(x1, x2)T : x2
1 + x2

2 = 1}, then T (x |Ω) = {(y1, y2) : x1y1 + x2y2 = 0}.
(3) A convex set is said to be polyhedral if it can be represented as the solution set of a finite number of linear

equality and /or inequality constraints. Thus, for example te constraint region for an LPs is a convex
polyhedron. If it is assumed that Ω is a convex polyhedron, then

T (x |Ω) =
⋃
λ≥0

λ(Ω− x) = {λ(y − x) |λ ≥ 0, y ∈ Ω} .

(4) If Ω is a convex subset of Rn, then

T (x |Ω) =
⋃
λ≥0

λ(Ω− x) = cl {λ(y − x) |λ ≥ 0, y ∈ Ω} .

Theorem 1.2. [Basic Constrained First-Order Necessary Conditions]
Suppose that the function f0 : Rn → R in P is continuously differentiable near the point x ∈ Ω. If x is a local
solution to P, then

f ′0(x; d) ≥ 0 for all d ∈ T (x |Ω) .

Proof. Note that the MVT (Mean Value Theorem) implies that

f ′0(x; d) = lim
τ↘0

f0(x+ τd)− f0(x)

τ
= lim

s→d
τ↘0

f0(x+ τs)− f0(x)

τ

since f0 is continuously differentiable.
Suppose x is a local solution to P and let d ∈ T (x |Ω). Since d ∈ T (x |Ω), there is a sequence {xi} ⊂ Ω and

ti ↓ 0 such that xi → x and si = t−1
i (xi−x)→ d. Note that x+tid ≈ x+tisi = xi, and so f(x+tisi) = f(xi) ≥ f(x).

Using the representation of the drectional derivative given above, we obtain

f ′0(x; d) = lim
s→d
τ↘0

f0(x+ τs)− f0(x)

τ
= lim
i→∞

f0(x+ tisi)− f0(x)

ti
= lim
i→∞

f0(xi)− f0(x)

ti
≥ 0.

�

This general result is not particulary useful on its own since it refers the the abstract notion of tangent cone.
In order to make it useful, we need to be able to compute the tangent cone once a representation for Ω is given.
We now show how this can be done.

We begin by assuming that Ω has the form

(76) Ω := {x : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = s+ 1, . . . ,m},
where each fi : Rn → R is continuously differentiable on Rn. Observe that if x ∈ Ω and d ∈ T (x |Ω) then there
are sequences {xk} ⊂ Ω and τk ↘ 0 with xk → x such that τ−1

k (xk − x) → d. Setting dk = τ−1
k (xk − x) for all k

we have that

f ′i(x; d) = lim
k→∞

fi(x+ τkdk)− fi(x)

τk
equals 0 for i ∈ {s+ 1, . . . , m} and is less than or equal to 0 for i ∈ I(x) where

I(x) := {i : i ∈ {1, . . . , s}, fi(x) = 0} .
Consequently,

T (x |Ω) ⊂ {d : ∇fi(x)T d ≤ 0, i ∈ I(x), ∇fi(x)T d = 0, i = s+ 1, . . . ,m} .
The set on the right hand side of this inclusion is a computationally tractable. Moreover, in a certain sense, the
cases where these two sets do not coincide are exceptional. For this reason we make the following definition.
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Definition 1.2. [Regularity]
We say that the set Ω is regular at x ∈ Ω if

T (x |Ω) = {d ∈ Rn : f ′i(x; d) ≤ 0, i ∈ I(x), f ′i(x; d) = 0 i = s+ 1, . . . ,m}.

But it is important to note that not every set is regular.

Exercise 1.1. Graph the set
Ω := {x ∈ R2| − x3

1 ≤ x2 ≤ x3
1},

and show that it is not regular at the origin. This is done by first showing that

TΩ(0) =
{

(d1, d2)T
∣∣ d1 ≥ 0, d2 = 0

}
.

Then set
f1(x1, x2) = −x3

1 − x2 and f1(x1, x2) = −x3
1 + x2,

so that Ω =
{

(x1, x2)T
∣∣ f1(x1, x2) ≤ 0, f2(x1, x2) ≤ 0

}
. Finally, show that{

d
∣∣∇f1(0, 0)T d ≤ 0,∇f2(0, 0)T d ≤ 0

}
=
{

(d1, d2)T
∣∣ d2 = 0

}
6= TΩ(0).

Next let us suppose we are at a given point x ∈ Ω and that we wish to obtain a new point x+ = x + td for
which f(x+) < f(x) for some direction d ∈ Rn and steplength t > 0. A good candidate for a search direction d
is one that minimizes f ′(x; d) over all directions that point into Ω up to first-order. That is, we should minimize
∇f(x)T d over the set of tangent directions. Remarkably, this search for a feasible direction of steepest descent can
be posed as the following linear program (assuming regularity):

(77)
max (−∇f0(x̄))T d
subject to ∇fi(x̄)T d ≤ 0 i ∈ I(x̄)

∇fi(x̄)T d = 0 i = s+ 1, . . . ,m.

The dual of (77) is the linear program

(78)

min 0
subject to

∑
i∈I(x̄) ui∇fi(x̄) +

∑m
i=s+1 ui∇fi(x̄) = −∇f0(x̄)

0 ≤ ui, i ∈ I(x̄).

If we assume that x is a local solution to P, Theorem 1.2 tells us that the maximum in (77) is less than or
equal to zero. But d = 0 is feasible for (77), hence the maximum value in (77) is zero. Therefore, by the
Strong Duality Theorem for Linear Programming, the linear program (78) is feasible, that is, there exist scalars
ui, i ∈ I(x) ∪ {s+ 1, . . . ,m} with ui ≥ 0 for i ∈ I(x) such that

(79) 0 = ∇f0(x) +
∑
i∈I(x)

ui∇fi(x) +

m∑
i=s+1

ui∇fi(x).

This observation yields the following result.

Theorem 1.3. [Constrained First-Order Optimality Conditions]
Let x ∈ Ω be a local solution to P at which Ω is regular. Then there exist u ∈ Rm such that

(1) 0 = ∇xL(x, u),
(2) 0 = uifi(x) for i = 1, . . . , s, and
(3) 0 ≤ ui, i = 1, . . . , s,

where the mapping L : Rn × Rm → R is defined by

L(x, u) := f0(x) +

m∑
i=1

uifi(x)

and is called the Lagrangian for the problem P.

Proof. For i ∈ I(x) ∪ {s + 1, . . . ,m} let ui be as given in (79) and for i ∈ {1, . . . , s} \ I(x) set ui = 0. Then
this choice of u ∈ Rm satisfies (1)–(3) above. �

Definition 1.3. [KKT Conditions]
Let x ∈ Rn and u ∈ Rm. We say that (x, u) is a Karush-Kuhn-Tucker (KKT) pair for P if
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(1) fi(x) ≤ 0 i = 1, . . . , s, fi(x) = 0 i = s+ 1, . . . ,m (Primal feasibility),
(2) ui ≥ 0 for i = 1, . . . , s (Dual feasibility),
(3) 0 = uifi(x) for i = 1, . . . , s (complementarity), and
(4) 0 = ∇xL(x, u) (stationarity of the Lagrangian).

Given x ∈ Rn, if there is a u ∈ Rm such that (x, u) is a Karush-Kuhn-Tucker pair for P, then we say that x is
a KKT point for P (we also refer to such an x as a stationary point for P). �

2. Regularity and Constraint Qualifications

We now briefly discuss conditions that yield the regularity of Ω at a point x ∈ Ω. These conditions should be
testable in the sense that there is a finitely terminating algorithm that can determine whether they are satisfied
or not satisfied. The condition that we will concentrate on is the so called Mangasarian-Fromovitz constraint
qualification (MFCQ).

Definition 2.1. [MFCQ]
We say that a point x ∈ Ω satisfies the Mangasarian-Fromovitz constraint qualification (or MFCQ) at x if

(1) there is a d ∈ Rn such that

∇fi(x)T d < 0 for i ∈ I(x),
∇fi(x)T d = 0 for i = s+ 1, · · · ,m,

and
(2) the gradients {∇fi(x)|i = s+ 1, · · · ,m} are linearly independent.

We have the following key result which we shall not prove.

Theorem 2.1. [MFCQ → Regularity] Let fi : Rn → R, i = 1, 2, · · · ,m be C1 near x ∈ Ω. If the MFCQ
holds at x, then Ω is regular at x.

The MFCQ is algorithmically verifiable. This is seen by considering the LP

(80)
min 0
subject to ∇fi(x)T d ≤ −1 i ∈ I(x)

∇fi(x)T d = 0 i = s+ 1, · · · ,m.

Cleary, the MFCQ is satisfied at x if and only if the above LP is feasible and the gradients {∇fi(x) | i = s+1, · · · ,m}
are linearly independent. This observation also leads to a dual characterization of the MFCQ by considering the
dual of the LP (80).

Lemma 2.1. [Dual MFCQ]
The MFCQ is satisfied at a point x ∈ Ω if and only if the only solution to the system

m∑
i=1

ui∇fi(x) = 0,

uifi(x) = 0 i = 1, 2, · · · , s, and

ui ≥ 0 i = 1, 2, · · · , s,

is ui = 0, i = 1, 2, · · · ,m.

Proof. The dual the LP (80) is the LP

(81)

min
∑
i∈I(x) ui

subject to
∑
i∈I(x) ui∇fi(x) +

∑m
i=s+1 ui∇fi(x) = 0

0 ≤ ui, i ∈ I(x).

This LP is always feasible, simply take all ui’s equal to zero. Hence, by the Strong Duality Theorem of Linear
Programming, the LP (80) is feasible if and only if the LP (81) is finite valued in which case the optimal value
in both is zero. That is, the MFCQ holds at x if and only if the optimal value in (81) is zero and the gradients
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{∇fi(x) | i = s+ 1, · · · ,m} are linearly independent. The latter statement is equvalent to the statement that the
only solution to the system

m∑
i=1

ui∇fi(x) = 0,

uifi(x) = 0 i = 1, 2, · · · , s, and

ui ≥ 0 i = 1, 2, · · · , s,

is ui = 0, i = 1, 2, · · · ,m. �

Techniques similar to these show that the MFCQ is a local property. That is, if it is satisfied at a point then
it must be satisfied on a neighborhood of that point. The MFCQ is a powerful tool in the analysis of constraint
systems as it implies many useful properties. One such property is established in the following result.

Theorem 2.2. [MFCQ → Compact Multiplier Set]
Let x ∈ Ω be a local solution to P at which the set of Karush-Kuhn-Tucker multipliers

(82) KKT (x) :=

u ∈ Rm
∣∣∣∣∣∣

∇xL(x, u) = 0
uifi(x) = 0, i = 1, 2, · · · , s,

0 ≤ ui, i = 1, 2, · · · , s


is non-empty. Then KKT (x) is a compact set if and only if the MFCQ is satisfied at x.

Proof. (⇒) If MFCQ is not satisfied at x, then from the Strong Duality Theorem for linear programming,
Lemma 2.1, and the LP (81) guarentees the existence of a non-zero vector ū ∈ Rm satisfying

m∑
i=1

ui∇fi(x) = 0 and 0 ≤ ui with 0 = uifi(x) for i = 1, 2, · · · , s.

Then for each u ∈ KKT (x) we have that u + tū ∈ KKT (x) for all t > 0. Consequently, KKT (x) cannot be
compact.
(⇐) If KKT (x) is not compact, there is a sequence {uj} ⊂ KKT (x) with

∥∥uj∥∥ ↑ +∞. With no loss is generality,
we may assume that

uj

‖uj‖
→ u.

But then

ui ≥ 0, i = 1, 2, · · · , s,
uifi(x) = limi→∞

uj

‖uj‖fi(x) = 0, i = 1, 2, · · · , s, and∑m
i=1 uifi(x) = limi→∞

∇xL(x,uj)
‖uj‖ = 0.

Hence, by Lemma 2.1, the MFCQ cannot be satisfied at x. �

Before closing this section we introduce one more constraint qualification. This is the so called LI condition
and is associated with the uniqueness of the multipliers..

Definition 2.2 (Linear Independence Condition). The LI condition is said to be satisfied at the point
x ∈ Ω if the constraint gradients

{∇fi(x) | i ∈ I(x) ∪ {s+ 1, · · · ,m}}

are linearly independent.

Clearly, the LI condition implies the MFCQ. However, it is a much stronger condition in the presence of
inequality constraints. In particular, the LI condition implies the uniqueness of the multipliers at a local solution
to P.
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3. Second–Order Conditions

Second–order conditions are introduced by way of the Lagrangian. As is illustrated in the following result, the
multipliers provide a natural way to incorporate the curvature of the constraints.

Theorem 3.1. [Constrained Second-Order Sufficiency]
Let Ω have representation (76) and suppose that each of the functions fi, i = 0, 1, 2, . . .m are C2. Let x ∈ Ω. If
(x, u) ∈ Rn × Rm is a Karush-Kuhn-Tucker pair for P such that

dT∇2
xL(x, u)d > 0

for all d ∈ TΩ(x), d 6= 0, with ∇f0(x)T d = 0, then there is an ε > 0 and ν > 0 such that

f0(x) ≥ f0(x) + ν‖x− x‖2

for every x ∈ Ω with ‖x− x‖ ≤ ε, in particular x is a strict local solution to P.

Proof. Suppose to the contrary that no such ε > 0 and ν > 0 exist, then there exist sequences {xk} ⊂ Ω,
{νk} ⊂ R+ such that xk → x, νk ↓ 0, and

f0(xk) ≤ f0(x) + νk‖xk − x‖2

for all k = 1, 2, . . .. For every x ∈ Ω we know that uT f(x) ≤ 0 and 0 = uT f(x) where the ith component of
f : Rn → Rm is fi. Hence

L(xk, u) ≤ f0(xk) ≤ f0(x) + νk‖xk − x‖2
= L(x, u) + νk‖xk − x‖2.

Therefore,

(83) f0(x) +∇f0(x)T (xk − x) + o(‖xk − x‖) ≤ f0(x) + νk‖xk − x‖2

and

(84)
L(x, u) +∇xL(x, u)T (xk − x)

+ 1
2 (xk − x)T∇2

xL(x, u)(xk − x) + o(‖xk − x‖2)
≤ L(x, u) + νk‖xk − x‖2 .

With no loss of generality, we can assume that

dk :=
xk − x
‖xk − x‖

→ d ∈ TΩ(x).

Dividing (83) through by ‖xk − x‖ and taking the limit we find that ∇f0(x)T d ≤ 0. Since

TΩ(x) ⊂ {d : ∇fi(x)T d ≤ 0, i ∈ I(x), ∇fi(x)T d = 0, i = s+ 1, . . . ,m},
we have ∇fi(x)T d ≤ 0, i ∈ I(x) ∪ {0} and ∇fi(x)T d = 0 for i = s + 1, . . . ,m. On the other hand, (x, u) is a
Karush-Kuhn-Tucker point so

∇f0(x)T d = −
∑
i∈I(x)

ui∇fi(x)T d ≥ 0.

Hence ∇f0(x)T d = 0, so that

d
T∇2

xL(x, u)d > 0.

But if we divide (84) by ‖xk − x‖2 and take the limit, we arrive at the contradiction

1

2
d
T∇2

xL(x, u)d ≤ 0,

whereby the result is established. �

The assumptions required to establish Theorem 3.1 are somewhat strong but they do lead to a very practical
and, in many cases, satisfactory second-order sufficiency result. In order to improve on this result one requires a
much more sophisticated mathematical machinery. We do not take the time to develop this machinery. Instead
we simply state a very general result. The statement of this result employs the entire set of Karush-Kuhn-Tucker
multipliers KKT (x).

Theorem 3.2 (General Constrained Second-Order Necessity and Sufficiency). Let x ∈ Ω be a
point at which Ω is regular.
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(1) If x is a local solution to P, then KKT (x) 6= ∅, and for every d ∈ T (x̄ |Ω) there is a u ∈ KKT (x) such
that

dT∇2
xL(x, u)d ≥ 0.

(2) If KKT (x) 6= ∅, and for every d ∈ T (x̄ |Ω), d 6= 0, for which ∇f0(x)T d = 0 there is a u ∈ KKT (x) such
that

dT∇2
xL(x, u)d > 0,

then there is an ε > 0 and ν > 0 such that

f0(x) ≥ f0(x) + ν‖x− x‖2

for every x ∈ Ω with ‖x− x‖ ≤ ε, in particular x is a strict local solution to P.

4. Optimality Conditions in the Presence of Convexity

As we saw in the unconstrained case, convexity can have profound implications for optimality and optimality
conditions. To begin with, we have the following very powerful result whose proof is identicle to the proof in the
unconstrained case.

Theorem 4.1. [Convexity+Local Optimality→Global Optimality]
Suppose that f0 : Rn → R is convex and that Ω ⊂ Rn is a convex set. If x ∈ Rn is a local solution to P, then x is
a global solution to P.

Proof. Suppose there is a x̂ ∈ Ω with f0(x̂) < f0(x). Let ε > 0 be such that

f0(x) ≤ f0(x) whenever ‖x− x‖ ≤ ε and x ∈ Ω,

and
ε < 2‖x− x̂‖ .

Set λ := ε(2‖x− x̂‖)−1 < 1 and xλ := x+λ(x̂−x) ∈ Ω. Then ‖xλ−x‖ ≤ ε/2 and f0(xλ) ≤ (1−λ)f0(x) +λf0(x̂) <
f0(x). This contradicts the choice of ε and so no such x̂ exists. �

We also have the following first-order necessary conditions for optimality. The proof of this result again follows
that for the unconstrained case.

Theorem 4.2. [1st-Order Necessity and Sufficiency]
Suppose that f0 : Rn → R is convex and that Ω ⊂ Rn is a convex set, and let x ∈ Ω. Then the following statements
are equivalent.

(i) x is a local solution to P.
(ii) f ′0(x : y − x) ≥ 0 for all y ∈ Ω.

(iii) x is a global solution to P.

Proof. The implication (i)⇒(ii) follows from Theorem 1.1 since each of the directions d = y − x, y ∈ Ω is
a feasible direction for Ω at x due to the convexity of Ω. To see the implication (ii)⇒(iii), we again resort to the
subdifferential inequality. Let y be any other point in Ω. Then d = y − x ∈ TΩ(x) and so by the subdifferential
inequality we have

f0(y) ≥ f0(x) + f ′0(x; y − x) ≥ f0(x).

Since y ∈ Ω was arbitrary the implication (ii)⇒(iii) follows. The implication (iii)⇒(i) is trivial. �

The utility of this result again depends on our ability to represent the tangent cone TΩ(x) in a computationally
tractable manner. Following the general case, we assume that the set Ω has the representation (76):

(85) Ω := {x : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = s+ 1, . . . ,m}.
The first issue we must address is to determine reasonable conditions on the functions fi that guarentee that the
set Ω is convex. We begin with the following elementary facts about convex functions and convex sets whose proofs
we leave to the reader.

Lemma 4.1. If Ci ⊂ Rn, i = 1, 2, . . . , N, are convex sets, then so is the set C =
⋂N
i=1 Ci.

Lemma 4.2. If h : Rn → R̄ is a convex function, then for every α ∈ R the set

levh (α) = {x |h(x) ≤ α}
is a convex set.
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These facts combine to give the following result.

Lemma 4.3. If the functions fi, i = 1, 2, . . . , s are convex and the functions fi, i = s + 1, . . . ,m are linear,
then the set Ω given by (85) is a convex set.

Remark 4.1. Recall that a function f : Rn → R is said to be linear if there exists c ∈ Rn and α ∈ R such that
f(x) = cTx+ α.

Proof. Note that

Ω =

(
m⋂
i=1

levfi (0)

)
∩

(
m⋂

i=s+1

lev−fi (0)

)
,

where each of the functions fi, i = 1, . . . ,m and −fi, i = s + 1, . . . ,m is convex. Therefore, the convexity of Ω
follows from Lemmas 4.2 and 4.1. �

In order to make the link to the KKT condition in the presence of convexity, we still require the regularity of
the set Ω at the point of interest x. If the set Ω is a polyhedral convex set, i.e.

Ω = {x |Ax ≤ a, Bx = b}
for some A ∈ Rs×n, a ∈ Rs, B ∈ R(m−s)×n, and b ∈ R(m−s), then the set Ω is everywhere regular (Why?). In the
general convex case this may not be true. However, convexity can be used to derive a much simpler test for the
regularity of non-polyhedral convex sets.

Definition 4.1 (The Slater Constraint Qualification). Let Ω ⊂ Rn be as given in (85) with fi, i =
1, . . . , s convex and fi, i = s + 1, . . . ,m linear. We say that Ω satisfies the Slater constraint qualification if there
exists x̃ ∈ Ω such that fi(x̃) < 0 for i = 1, . . . , s.

Theorem 4.3 (Convexity and Regularity). Suppose Ω ⊂ Rn is as given in (85) with fi, i = 1, . . . , s convex
and fi, i = s+ 1, . . . ,m linear. If either Ω is polyhedral convex or satisfies the Slater constraint qualification, then
Ω is regular at every point x ∈ Ω at which the function fi, i = 1, . . . , s are differentiable.

We do not present the proof of this result as it takes us too far afield of our study. Nonetheless, we make use
of this fact in the following result of the KKT conditions.

Theorem 4.4 (Convexity+Regularity→(Optimality⇔ KKT Conditions)). Let f0 : Rn → R be a
differentiable convex function and let Ω be as given in Lemma 4.3 where each of the function fi, i = 1, . . . , s is
differentiable.

(i) If x ∈ Ω is a KKT point for P, then x is a global solution to P.
(ii) Suppose the functions fi, i = 0, 1, . . . , s are continuously differentiable. If x is a solution to P at which Ω

is regular, then x is a KKT point for P.

Proof. Part (ii) of this theorem is just a restatement of Theorem 1.3 and so we need only prove Part (i).
Since x is a KKT point there exists y ∈ Rm such that (x, y) is a KKT pair for P. Consider the function

h : Rn → R given by

h(x) = L(x, y) = f0(x) +

m∑
i=1

yifi(x).

By construction, the function h is convex with 0 = ∇h(x) = ∇xL(x, y). Therefore, x is a global solution to the
problem minx∈Rn h(x). Also note that for every x ∈ Ω we have

m∑
i=1

yifi(x) ≤ 0,

since yifi(x) ≤ 0 i = 1, . . . , s and yifi(x) = 0 i = s+ 1, . . . ,m. Consequently,

f0(x) = h(x) ≤ h(x) = L(x, y)

= f0(x) +
m∑
i=1

yifi(x)

≤ f0(x)

for all x ∈ Ω. This establishes Part (i). �
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If all of the functions fi i = 0, 1, . . . ,m are twice continuously differentiable, then the second-order sufficiency
conditions stated in Theorem 3.1 apply. However, in the presence of convexity another kind of second-order
condition is possible that does not directly incorporate curvature information about the functions fii = 1, . . . ,m.
These second-order conditions are most appropriate when Ω is polyhedral convex.

Theorem 4.5. [2nd-Order Optimality Conditions for Polyhedral Constraints]
Let f0 : Rn → R be C2 and x be an element of the convex set Ω.

(1) (necessity) If x ∈ Rn is a local solution to P with Ω a polyhedral convex set, then ∇f0(x)T d ≥ 0 for all
d ∈ TΩ(x) and

dT∇2f0(x)d ≥ 0

for all d ∈ TΩ(x) with ∇f(x)T d = 0.
(2) (sufficiency) If x ∈ Rn is such that ∇f0(x)T (y − x) ≥ 0 for all d ∈ TΩ(x) and

dT∇2f0(x)d > 0

for all d ∈ TΩ(x)\{0} with ∇f0(x)T d = 0, then there exist ε, ν > 0 such that

f0(x) ≥ f0(x) + ν‖x− x‖2

for all x ∈ Ω with ‖x− x‖ ≤ ε.

Proof. (1) Since Ω is polyhedral convex, we have TΩ(x) =
⋃
λ≥0(Ω−x̄). Therefore, the fact that∇f0(x)T d ≥ 0

for all d ∈ TΩ(x) follows from Theorem 4.2. Next let d ∈ TΩ(x) =
⋃
λ≥0(Ω− x̄) be such that ∇f0(x)T d = 0. Then

there is a y ∈ Ω, y 6= x, and a λ0 > 0 such that d = λ0(y − x). Let ε > 0 be such that f0(x) ≤ f0(x) for all x ∈ Ω
with ‖x− x‖ ≤ ε. Set λ = min{λ0, ε(λ0‖y− x‖)−1} > 0 so that x+λd ∈ Ω and ‖x− (x+λd)‖ ≤ ε for all λ ∈ [0, λ].
By hypothesis, we now have

f0(x) ≤ f0(x+ λd)

= f0(x) + λ∇f0(x)T (y − x) + λ2

2 d
T∇2f0(x)d+ o(λ2)

= f0(x) + λ2

2 d
T∇2f0(x)d+ o(λ2),

where the second equality follows from the choice of d (∇f0(x)T d = 0) Therefore
dT∇2f0(x)d ≥ 0.

(2) We show that f0(x) ≤ f0(x)− ν‖x− x‖2 for some ν > 0 for all x ∈ Ω near x. Indeed, if this were not the case
there would exist sequences {xk} ⊂ Ω, {νk} ⊂ R+ with xk → x, νk ↓ 0, and

f0(xk) < f0(x) + νk‖xk − x‖2

for all k = 1, 2, . . . where, with no loss of generality, xk−x
‖xk−x‖ → d. Clearly, d ∈ TΩ(x). Moreover,

f0(x) +∇f0(x)T (xk − x) +o(‖xk − x‖)
= f0(xk)
≤ f0(x) + νk‖xk − x‖2

so that ∇f0(x)T d = 0.
Now, since ∇f0(x)T (xk − x) ≥ 0 for all k = 1, 2, . . .,

f0(x) + 1
2 (xk − x)T∇2f0(x)(xk − x) + o(‖xk − x‖2)

≤ f0(x) +∇f0(x)T (xk − x) + 1
2 (xk − x)T∇2f0(x)(xk − x)

+o(‖xk − x‖2)
= f0(xk)
< f0(x) + νk‖xk − x‖2.

Hence, (
xk − x
‖xk − x‖

)T
∇2f0(x)

(
xk − x
‖xk − x‖

)
≤ νk +

o(‖xk − x‖2)

‖xk − x‖2
Taking the limit in k we obtain the contradiction

0 < dT∇2f0(x)d ≤ 0,

whereby the result is established. �



82 7. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION

Although it is possible to weaken the assumption of polyhedrality in Part 1, such weakenings are somewhat
artificial as they essentially imply that TΩ(x) =

⋃
λ≥0(Ω−x). The following example illustrates what can go wrong

when the assumption of polyhedrality is dropped.

Example 4.1. Consider the problem

min 1
2 (x2 − x2

1)
subject to 0 ≤ x2, x

3
1 ≤ x2

2.

Observe that the constraint region in this problem can be written as Ω := {(x1, x2)T : |x1|
3
2 ≤ x2}, therefore

f0(x) = 1
2 (x2 − x2

1)

≥ 1
2 ( |x1|

3
2 − |x1| 2)

= 1
2 |x1|

3
2 (1− |x1|

1
2 ) > 0

whenever 0 < |x1| ≤ 1. Consequently, the origin is a strict local solution for this problem. Nonetheless,

TΩ(0) ∩ [∇f0(0)]⊥ = {(δ, 0)T : δ ∈ R},
while

∇2f0(0) =

[
−1 0
0 0

]
.

That is, even though the origin is a strict local solution, the Hessian of f0 is not positive semidefinite on TΩ(0).

When using the second-order conditions given above, one needs to be careful about the relationship between
the Hessian of f0 and the set K := TΩ(x) ∩ [∇f0(x)]⊥. In particular, the positive definiteness (or semidefiniteness)
of the Hessian of f0 on the cone K does not necessarily imply the positive definiteness (or semidefiniteness) of the
Hessian of f0 on the subspace spaned by K. This is illustrated by the following example.

Example 4.2. Consider the problem

min (x2
1 − 1

2x
2
2)

subject to −x1 ≤ x2 ≤ x1.

Clearly, the origin is the unique global solution for this problem. Moreover, the constraint region for this problem,
Ω, satisfies

TΩ(0) ∩ [∇f(0)]⊥ = TΩ(0) = Ω ,

with the span of Ω being all of R2. Now, while the Hessian of f0 is positive definite on Ω, it is not positive definite
on all of R2.

In the polyhedral case it is easy to see that the sufficiency result in Theorem 4.5 is equivalent to the sufficiency
result of Theorem 3.1. However, in the nonpolyhedral case, these results are not comparable. It is easy to see that
Theorem 4.5 can handle situations where Theorem 3.1 does not apply even if Ω is given in the form (76). Just
let one of the active constraint functions be nondifferentiable at the solution. Similarly, Theorem 3.1 can provide
information when Theorem 4.5 does not. This is illustrated by the following example.

Example 4.3. Consider the problem

min x2

subject to x2
1 ≤ x2.

Clearly, x = 0 is the unique global solution to this convex program. Moreover,

f0(x) + 1
2 ‖x− x‖

2
= 1

2 (x2
1 + x2

2)

≤ 1
2 (x2 + x2

2)

≤ x2 = f0(x)

for all x in the constraint region Ω with ‖x− x‖ ≤ 1. It is easily verified that this growth property is predicted by
Theorem 4.5.
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5. Convex Optimization, Saddle Point Theory, and Lagrangian Duality

In this section we extend the duality theory for linear programming to general problmes of convex optimization.
This is accomplished using the saddle point properties of the Lagrangian in convex optimization. Again, consider
the problem

P minimize f0(x)
subject to fi ≤ 0, i = 1, 2, . . . , s

fi(x) = 0, i = s+ 1, . . . ,m,

where it is assumed that the functions f0, f1, . . . , fs are convex functions mapping Rn to R, and fs+1, . . . , fm are
affine mappings from Rn to R. We denote the constraint region for P by Ω.

The Lagrangian for P is the function

L(x, y) = f0(x) + y1f1(x) + y2f2(x) + · · ·+ ymfm(x),

where it is always assumed that 0 ≤ yi, i = 1, 2, . . . , s. Set K = Rs+ ×Rm−s ⊂ Rm. A pair (x, y) ∈ Rn ×K is said
to be a saddle point for L if

L(x, y) ≤ L(x, y) ≤ L(x, y) ∀ (x, y) ∈ Rn ×K.

We have the following basic saddle point theorem for L.

Theorem 5.1 (Saddle Point Theorem). Let x ∈ Rn. If there exists y ∈ K such that (x, y) is a saddle point
for the Lagrangian L, then x solves P. Conversely, if x is a solution to P at which the Slater C.Q. is satisfied, then
there is a y ∈ K such that (x, y) is a saddle point for L.

Proof. If (x, y) ∈ Rn ×K is a saddle point for P then

sup
y∈K

L(x, y) = sup
y∈K

f0(x) + y1f1(x) + y2f2(x) + · · ·+ ymfm(x) ≤ L(x, y).

If for some i ∈ {1, . . . , s} such that fi(x) > 0, then we could send yi ↑ +∞ to find that the supremum on the
left is +∞ which is a contradiction, so we must have fi(x) ≤ 0, i = 1, . . . , s. Moreover, if fi(x) 6= 0 for some
i ∈ {s + 1, . . . ,m}, then we could send yi ↑ −sign(fi(x))∞ to again find that the supremum on the left is +∞
again a contradiction, so we must have fi(x) = 0, i = s + 1, . . . ,m. That is, we must have x ∈ Ω. Since
L(x, y) = supy∈K L(x, y), we must have

∑m
i=1 yifi(x) = 0. Therefore the right half of the saddle point condition

implies that

f0(x) = L(x, y) ≤ inf
x
L(x, y) ≤ inf

x∈Ω
L(x, y) ≤ inf

x∈Ω
f0(x) ≤ f0(x),

and so x solves P.
Conversely, if x is a solution to P at which the Slater C.Q. is satisfied, then there is a vector y such that (x, y) is

a KKT pair for P. Primal feasibility (x ∈ Ω), dual feaasibility (y ∈ K), and complementarity (yifi(x), i = 1, . . . , s)
imply that

L(x, y) ≤ f0(x) = L(x, y) ∀ y ∈ K.
On the other hand, dual feasibility and convexity imply the convexity of the function L(x, y) in x. Hence the
condition 0 = ∇xL(x, y) implies that x is a global minimizer for the function x→ L(x, y), that is

L(x, y) ≤ L(x, y) ∀ x ∈ Rn.

Therefore, (x, y) is a saddle point for L. �

Note that it is always the case that

sup
y∈K

inf
x∈Rn

L(x, y) ≤ inf
x∈Rn

sup
y∈K

L(x, y)

since the largest minimum is always smaller that the smallest maximum. On the other hand, if (x, y) is a saddle
point for L, then

inf
x∈Rn

sup
y∈K

L(x, y) ≤ sup
y∈K

L(x, y) ≤ L(x, y) ≤ inf
x∈Rn

L(x, y) ≤ sup
y∈K

inf
x∈Rn

L(x, y).

Hence, if a saddle point for L exists on Rn ×K, then

sup
y∈K

inf
x∈Rn

L(x, y) = inf
x∈Rn

sup
y∈K

L(x, y).
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Such a result is called a mini-max theorem and provides conditions under which one can exchange and inf-sup for
a sup-inf. This mini-max result can be used as a basis for convex duality theory.

Observe that we have already shown that

sup
y∈K

L(x, y) =

{
+∞ if x /∈ Ω,
f0(x) if x ∈ Ω.

Therefore,

inf
x∈Rn

sup
y∈K

L(x, y) = inf
x∈Ω

f0(x) .

We will call this the primal problem. This is the inf-sup side of the saddle point problem. The other side, the
sup-inf problem, we will call the dual problem with dual objective function

g(y) = inf
x∈Rn

L(x, y) .

The Saddle Point Theorem says that if (x, y) is a saddle point for L, then x solves the primal problem, y solves the
dual problem, and the optimal values in the primal and dual problems coincide. This is a Weak Duality Theorem.
The Strong Duality Theorem follows from the second half of the Saddle Point Theorem and requires the use of the
Slater Constraint Qualification.

5.1. Linear Programming Duality. We now show how the Lagrangian Duality Theory described above
gives linear programming duality as a special case. Consider the following LP:

P minimize bTx
subject to ATx ≥ c, 0 ≤ x .

The Lagrangian is

L(x, y, v) = bTx+ yT (c−ATx)− vTx, where 0 ≤ y, 0 ≤ v .

The dual objective function is

g(y, u) = min
x∈Rn

L(x, y, v) = min
x∈Rn

bTx+ yT (c−ATx)− vTx .

Our first goal is to obtain a closed form expression for g(y, u). This is accomplished by using the optimality
conditions for minimizing L(x, y, u) to eliminate x from the definition of L. Since L(x, y, v) is a convex function in
x, the global solution to minx∈Rn L(x, y, v) is obtained by solving the equation 0 = ∇xL(x, y, u) = b−Ay − v with
0 ≤ y, 0 ≤ v. Using this condition in the definition of L we get

L(x, y, u) = bTx+ yT (c−ATx)− vTx = (b−Ay − v)Tx+ cT y = cT y,

subject to b−AT y = v and 0 ≤ y, 0 ≤ v. Hence the Lagrangian dual problem

maximize g(y, v)
subject to 0 ≤ y, 0 ≤ v

can be written as

D maximize cT y
subject to b−Ay = v, 0 ≤ y, 0 ≤ v .

Note that we can treat the variable v as a slack variable in this LP and write

D maximize cT y
subject to Ay ≤ b, 0 ≤ y .

The linear program D is the dual to the linear program P.
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5.2. Convex Quadratic Programming Duality. One can also apply the Lagrangian Duality Theory in
the context of Convex Quadratic Programming. To see how this is done let Q ∈ Rn×n be symmetric and positive
definite, and let c ∈ Rn. Consider the convex quadratic program

D minimize 1
2x

TQx+ cTx
subject to Ax ≤ b, 0 ≤ x .

The Lagrangian is given by

L(x, y, v) = 1
2x

TQx+ cTx+ yT (ATx− b)− vTx where 0 ≤ y, 0 ≤ v.
The dual objective function is

g(y, v) = min
x∈Rn

L(x, y, v) .

The goal is to obtain a closed form expression for g with the variable x removed by using the first-order optimality
condition 0 = ∇xL(x, y, v). This optimality condition completely identifies the solution since L is convex in x. We
have

0 = ∇xL(x, y, v) = Qx+ c+AT y − v.
Since Q is invertible, we have

x = Q−1(v −AT y − c).
Plugging this expression for x into L(x, y, v) gives

g(y, v) = L(Q−1(v −AT y − c), y, v)

= 1
2 (v −AT y − c)TQ−1(v −AT y − c)

+cTQ−1(v −AT y − c) + yT (AQ−1(v −AT y − c)− b)− vTQ−1(v −AT y − c)
= 1

2 (v −AT y − c)TQ−1(v −AT y − c)− (v −AT y − c)TQ−1(v −AT y − c)− bT y
= − 1

2 (v −AT y − c)TQ−1(v −AT y − c)− bT y .
Hence the dual problem is

maximize − 1
2 (v −AT y − c)TQ−1(v −AT y − c)− bT y

subject to 0 ≤ y, 0 ≤ v .

Moreover, (y, v) solve the dual problem if an only if x = Q−1(v − AT y − c) solves the primal problem with the
primal and dual optimal values coinciding.
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Exercises
(1) Locate all of the KKT points for the following problems. Can you show that these points are local

solutions? Global solutions?
(a)

minimize e(x1−x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

(b)

minimize e(−x1+x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

(c)

minimize x2
1 + x2

2 − 4x1 − 4x2

subject to x2
1 ≤ x2

x1 + x2 ≤ 2

(d)

minimize 1
2 ‖x‖

2

subject to Ax = b

where b ∈ Rm and A ∈ Rm×n satisfies Nul (AT ) = {0}.
(2) Show that the set

Ω := {x ∈ R2| − x3
1 ≤ x2 ≤ x3

1}
is not regular at the origin. Graph the set Ω.

(3) Construct an example of a constraint region of the form (76) at which the MFCQ is satisfied, but the LI
condition is not satisfied.

(4) Suppose Ω = {x ; Ax ≤ b, Ex = h} where A ∈ Rm×, E ∈ Rk×n, b ∈ Rm, and h ∈ Rk.
(a) Given x ∈ Ω, show that

T (x |Ω) = {d : Ai·d ≤ 0 for i ∈ I(x), Ed = 0},

where Ai· denotes the ith row of the matrix A and I(x) = {i Ai·x = bi}.
(b) Given x ∈ Ω, show that every d ∈ T (x |Ω) is a feasible direction for Ω at x.
(c) Note that parts (a) and (b) above show that

T (x |Ω) =
⋃
λ>0

λ(Ω− x)

whenever Ω is a convex polyhedral set. Why?
(5) Let C ⊂ Rn be non-empty, closed and convex. For any x ∈ Rn consider the problem of finding the closest

point in C to x using the 2-norm:

D minimize 1
2 ‖x− z‖

2
2

subject to x ∈ C .

Show that z ∈ C solves this problem if and only if

〈x− z, z − z〉 ≤ 0 for all z ∈ C.

(6) Let Ω be a non-empty closed convex subset of Rn. The geometric object dual to the tangent cone is called
the normal cone:

N (x |Ω) = {z ; 〈z, d〉 ≤ 0, for all d ∈ T (x |Ω)}.
(a) Show that if x solves the problem min{f(x) : x ∈ Ω} then

−∇f(x) ∈ N (x |Ω) .

(b) Show that

N (x |Ω) = {z : 〈z, x− x〉 ≤ 0, for all x ∈ Ω}.
(c) Let x ∈ Ω. Show that x solves the problem min{ 1

2 ‖x− y‖
2
2 : x ∈ Ω} for every y ∈ x+N (x |Ω).
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(7) Consider the functions

f(x) =
1

2
xTQx− cTx

and

ft(x) =
1

2
xTQx− cTx+ tφ(x),

where t > 0, Q ∈ Rn×n is positive semi-definite, c ∈ Rn, and φ : Rn → R ∪ {+∞} is given by

φ(x) =

{
−
∑n
i=1 lnxi , if xi > 0, i = 1, 2, . . . , n,

+∞ , otherwise.

(a) Show that φ is a convex function.
(b) Show that both f and ft are convex functions.
(c) Show that the solution to the problem min ft(x) always exists and is unique.
(d) Let {ti} be a decreasing sequence of positive real scalars with ti ↓ 0, and let xi be the solution to the

problem min fti(x). Show that if the sequence {xi} has a cluster point x, then x must be a solution
to the problem min{f(x) : 0 ≤ x}.
Hint: Use the KKT conditions for the QP min{f(x) : 0 ≤ x}.
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