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CHAPTER 5

Elements of Multivariable Calculus

1. Norms and Continuity

As we have seen the 2-norm gives us a measure of the magnitude of a vector v in Rn, ‖v‖2. As such it also gives
us a measure of the distance between to vectors u, v ∈ Rn, ‖u− v‖2. Such measures of magnitude and distance are
very useful tools for measuring model misfit as is the case in linear least squares problem. They are also essential
for analyzing the behavior of sequences and functions on Rn as well as on the space of matrices Rm×n. For this
reason, we formalize the notion of a norm to incorporate other measures of magnitude and distance.

Definition 1.1. [Vector Norm] A function ‖·‖ : Rn → R is a vector norm on Rn if

(1) ‖x‖ ≥ 0 for all x ∈ Rn with equality if and only if x = 0,
(2) ‖αx‖ = |α| ‖x‖ for all x ∈ Rn and α ∈ R, and
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

Example 1.1. Perhaps the most common examples of norms are the p-norms for 1 ≤ p ≤ ∞. Given 1 ≤ p <∞,
the `p-norm on Rn is defined as

‖x‖p :=

 n∑
j=1

|xj |p
1/p

.

For p =∞, we define

‖x‖∞ := max {|xi| | i = 1, 2, . . . , n} .
This choice of notation for the ∞-norm comes from the relation

lim
p↑∞
‖x‖p = ‖x‖∞ ∀ x ∈ Rn.

In applications, the most important of these norms are the p = 1, 2,∞ norms as well as variations on these norms.

In finite dimensions all norms are said the equivalent in the sense that one can show that for any two norms
‖·‖(a) and ‖·‖(b) on Rn there exist positive constants α and β such that

α ‖x‖a ≤ ‖x‖b ≤ β ‖x‖a ∀x ∈ Rn .

But we caution that in practice the numerical behavior of these norms differ greatly when the dimension is large.
Since norms can be used to measure the distance between vectors, they can be used to form a notions of

continuity for functions mapping Rn to Rm that parallel those established for mappings from R to R.

Definition 1.2. [Continuous Functions] Let F : Rn → Rn.

(1) F is said to be continuous at a point x ∈ Rn if for all ε > 0 there is a δ > 0 such that

‖F (x)− F (x)‖ ≤ ε whenever ‖x− x‖ ≤ δ .

(2) F is said to be continuous on a set S ⊂ Rn if it is continuous at every point of S.
(3) The function F is said to be continuous relative to a set S ⊂ Rn if

‖F (x)− F (x)‖ ≤ ε whenever ‖x− x‖ ≤ δ and x ∈ S .

(4) The function F is said to be uniformly continuous on a set S ⊂ Rn if if for all ε > 0 there is a δ > 0 such
that

‖F (x)− F (y)‖ ≤ ε whenever ‖x− y‖ ≤ δ and x, y ∈ S.
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54 5. ELEMENTS OF MULTIVARIABLE CALCULUS

Norms allow us to define certain topological notions that are very helpful in analizing the behavior of sequences
and functions. Since we will make frequent use of these concepts, it is helpful to have certain notational conventions
associated with norms. We list a few of these below:

the closed unit ball B := {x | ‖x‖ ≤ 1}
the unit vectors S := {x | ‖x‖ = 1}
ε-ball about x x+ εB := {x+ εu |u ∈ B} = {x | ‖x− x‖ ≤ ε}

The unit ball associated with the 1, 2, and ∞ norms will be denoted by B1, B2, and B∞, respectively.
A few basic topological notions are listed in the following definition. The most important of these for our

purposes is compactness.

Definition 1.3. Let S be a subset of Rn, and let ‖·‖ be a norm on Rn.

(1) The set S is said to be an open set if for every x ∈ S there is an ε > 0 such that x+ εB ⊂ S.
(2) The set S is said to be a closed set if S contains every point x ∈ Rn for which there is a sequence {xk} ⊂ S

with limk→∞
∥∥xk − x∥∥ = 0.

(3) The set S is said to be a bounded set set if there is a β > 0 such that S ⊂ βB.
(4) The set S is said to be a compact set if it is both closed and bounded.
(5) A point x ∈ Rn is a cluster point of the set S if there is a sequence {xk} ⊂ S with limk→∞

∥∥xk − x∥∥ = 0.
(6) A point x ∈ Rn is said to be a boundary point of the set S if for all ε > 0, (x + εB) ∩ S 6= ∅ while

(x+ εB) 6⊂ S, i.e., every ε ball about x contains points that are in S and points that are not in S.

The importance of the notion of compactness in optimization is illustrated in following basic theorems from
analysis that we make extensive use of, but do not prove.

Theorem 1.1. [Compactness implies Uniform Continuity] Let F : Rn → Rn be a continuous function on an
open set S ⊂ Rn. Then F is uniformly continuous on every compact subset of S.

Theorem 1.2. [Weierstrass Compactness Theorem] A set D ⊂ Rn is compact if and only if every infinite
sequence in D has a cluster point in D.

Theorem 1.3. [Weierstrass Extreme Value Theorem] Every continuous function on a compact set attains its
extreme values on that set. That is, there are points in the set at which both the infimum and the supremum of the
function relative to the set are attained.

We will also have need of a norm on the space of matrices. First note that the space of matrices Rm×n is itself
a vector space since it is closed with respect to addition and real scalar multiplication with both operations being
distributive and commutative and Rm×n contains the zero matrix. In addition, we can embed Rm×n in Rmn by
stacking one column on top of another to get a long vector of length mn. This process of stacking the columns is
denoted by the vec operator (column vec): given A ∈ Rm×n,

vec(A) =


A·1
A·2

...
A·n

 ∈ Rmn .

Example 1.2.

vec

[
1 2 −3
0 −1 4

]
=


1
0
2
−1
−3

4


Using the vec operation, we define an inner product on Rm×n by taking the inner product of these vectors of

length mn. Given A,B ∈ Rm×n we write this inner product as 〈A, B〉. It is easy to show that this inner product
obeys the formula

〈A, B〉 = vec(A)Tvec(B) = tr
(
ATB

)
.
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This is known as the Frobenius inner product. It generates a corresponding norm, called the Frobenius norm, by
setting

‖A‖F := ‖vec(A)‖2 =
√
〈A, A〉.

Note that for a given x ∈ Rn and A ∈ Rm×n we have

‖Ax‖22 =

m∑
i=1

(Ai· • x)2 ≤
m∑
i=1

(‖Ai·‖2 ‖x‖2)2 = ‖x‖22
m∑
i=1

‖Ai·‖22 = ‖A‖2F ‖x‖
2
2 ,

and so

(61) ‖Ax‖2 ≤ ‖A‖F ‖x‖2 .

This relationship between the Frobenius norm and the 2-norm is very important and is used extensively in our
development. In particular, this implies that for any two matrices A ∈ Rm×n and B ∈ Rn×k we have

‖AB‖F ≤ ‖A‖F ‖B‖F .

2. Differentiation

In this section we use our understanding of differentiability for mappings from R to R to build a theory of
differentiation for mappings from Rn to Rm. Let F be a mapping from Rn to Rm which we denote by F : Rn → Rm.
Let the component functions of F be denoted by Fi : Rn → R:

F (x) =


F1(x)
F2(x)

...
Fm(x)

 .

Example 2.1.

F (x) = F

x1x2
x3

 =


3x21 + x1x2x3

2 cos(x1) sin(x2x3)
ln[exp(x21 + x22 + x23)]

1/
√

1 + (x2x3)2

 .

In this case, n = 3, m = 4, and

F1(x) = 3x21 + x1x2x3, F2(x) = 2 cos(x1) sin(x2x3), F3(x) = ln[exp(x21 + x22 + x23)], F4(x) = 1/
√

1 + (x2x3)2 .

The first step in understanding the differentiability of mappings on Rn is to study their one dimensional
properties. For this, consider a function f : Rn → R and let x and d be elements of Rn. We define the directional
derivative of f in the direction d, when it exits, to be the one sided limit

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

Example 2.2. Let f : R2 → R be given by f(x1, x2) := x1 |x2|, and let x = (1, 0)T and d = (2, 2). Then,

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
= lim

t↓0

(1 + 2t) |0 + 2t| − 1 |0|
t

= lim
t↓0

2(1 + 2t)t

t
= 2 ,

while, for d = −(2, 2)T ,

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
= lim

t↓0

(1− 2t) |0− 2t| − 1 |0|
t

= lim
t↓0

2(1− 2t)t

t
= 2 .

In general, we have

f ′((1, 0); (d1, d2)) = lim
t↓0

(1 + d1t) |d2t|
t

= |d2|.

For technical reasons, we allow this limit to take the values ±∞. For example, if f(x) = x1/3, then

f ′(0; 1) = lim
t↓0

t−2/3 = +∞ and f ′(0;−1) = lim
t↓0
−t−2/3 = −∞.
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This example as well as the one given in Example 2.2 show that the directional derivative f ′(x; d) is not necessarily
either continuous or smooth in the d argument even if it exists for all choices of d. However, the directional derivative
is always positively homogeneous in the sense that, given λ ≥ 0, we have

f ′(x;λd) = lim
t↓0

f(x+ λtd)− f(x)

t
λ lim
t↓0

f(x+ λtd)− f(x)

λt
= λf ′(x; d) .

The directional derivative idea can be extended to functions F mapping Rn into Rm by defining it componen-
twise: if the limit

F ′(x; d) := lim
t↓0

F (x+ td)− F (x)

t
=


limt↓0

F1(x+td)−F1(x)
t

limt↓0
F2(x+td)−F2(x)

t
...

limt↓0
Fm(x+td)−Fm(x)

t


exists, it is called the directional derivative of F at x in the direction d.

These elementary ideas lead to the following notions of differentiability.

Definition 2.1. [Differentiable Functions] Let f : Rn → R and F : Rn → Rm.

(1) If f ′(x; d) = limt→0
f(x+λtd)−f(x)

t , then we say that f is differentiable in the direction d, in which case
f ′(x;−d) = −f ′(x; d).

(2) Let ej j = 1, . . . , n denote the unit coordinate vectors. If f is differentiable in the direction ej, we say that
the partial derivative of f with respect to the component xj exists and write

∂f(x)

∂xj
:= f ′(x; ej).

In particular, we have

f(x+ tej) = f(x) + t
∂f(x)

∂xj
+ o(t), where limt→0

o(t)
t = 0.

Note that ∂f(·)
∂xj

: Rn → R.

(3) We say that f is (Fréchet) differentiable at x ∈ Rn if there is a vector g ∈ Rn such that

lim
y→x

|f(y)− f(x)− gT (y − x)|
‖y − x‖

= 0.

If such a vector g exists, we write g = ∇f(x) and call ∇f(x) the gradient of f at x. In particular, the
differentiability of f at x is equivalent to the following statement:

f(y) = f(x) +∇f(x)T (y − x) + o(‖y − x‖)

for all y near x, where limy→x
o(‖y−x‖)
‖y−x‖ = 0.

(4) We say that F is (Fréchet) differentiable at x ∈ Rn if there is a matrix J ∈ Rm×n such that

lim
y→x

‖F (y)− F (x)− J(y − x)‖
‖y − x‖

= 0.

If such a matrix J exists, we write J = ∇F (x) and call ∇F (x) the Jacobian of F at x. In particular, the
differentiability of f at x is equivalent to the following statement:

F (y) = F (x) +∇F (x)T (y − x) + o(‖y − x‖)

for all y near x, where limy→x
o(‖y−x‖)
‖y−x‖ = 0.

Remark 2.1. Note that there is an inconsistency here in the use of the ∇ notation when F : Rn → Rm with
m = 1. The inconsistency arises due to the presense of gT in Part (3) of Definition 2.1 and the absence of a
transpose in Part (4) of this definition. For this reason, we must take extra care in in interpreting this notation in
this case.

Remark 2.2. [Little-o Notation] In these notes we use the notation o(t) to represent any element of a function

class for which limt→0
o(t)
t = 0. In particular, this implies that for all α ∈ R

αo(t) = o(t), o(t) + o(t) = o(t), and tso(tr) = o(tr+s).
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Several observations about these notions of differentiability are in order. First, the existence of the directional
derivative f ′(x; d) nor the differentiability of f at x in the direction d requires the continuity of the function
at that point. Second, the existence of f ′(x; d) in all directions d does imply the continuity of the mapping
d 7→ f ′(x; d). Therefore, the directional derivative, although useful, is a very weak object to describe the local
variational properties of a function. On the other hand, differentiability is a very powerful statement. A few
consequences of differentiability are listed in the following theorem.

Theorem 2.1. Let f : Rn → R and F : Rn → Rm.

(1) If f is differentiable at x, then

∇f(x) =


∂f(x)
∂x1
∂f(x)
∂x2

...
∂f(x)
∂xn

 ,

and f ′(x; d) = ∇f(x)T d for all d ∈ Rn.
(2) If F is differentiable at x, then

(∇F (x))ij =
∂Fi(x)

∂xj
i = 1, . . . ,m and j = 1, 2, . . . , n.

(3) If F is differentiable at a point x, then it is necessarily continuous at x.

Higher order derivatives are obtained by applying these notions of differentiability to the derivatives themselves.
For example, to compute the second derivative, the derivative needs to exist at all points near the point at which
the second derivative needs to be computed so that the necessary limit is well defined. From the above, we know

that the partial derivative ∂Fi(x)
∂xj

, when it exists, is a mapping from Rn to R. Therefore, it is possible to consider

the partial derivatives of these partial derivatives. For such partial derivatives we use the notation

(62)
∂2Fi(x)

∂xj∂xk
:=

∂
(
∂Fi(x)
∂xk

)
∂xj

.

The second derivative of f : Rn → R is the derivative of the mapping ∇f : Rn → Rn, and we write ∇(∇f(x)) =:
∇2f(x). We call ∇2f(x) the Hessian of f at x. By (62), we have

∇2f(x) =


∂2f(x)
∂2x1

∂2f(x)
∂x2∂x1

. . . ∂2f(x)
∂xn∂x1

∂2f(x)
∂x1∂x2

∂2f(x)
∂2x2

. . . ∂2f(x)
∂xn∂x2

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

. . . ∂2f(x)
∂2xn

 .
We have the following key property of the Hessian.

Theorem 2.2. Let f : Rn → R be such that all of the second partials ∂2f(x)
∂xi∂xj

, ij = 1, 2, . . . , n exist and are

continuous near x ∈ Rn. Then ∇2f(x) is a real symmetric matrix, i.e., ∇2f(x) = ∇2f(x)T .

The partial derivative representations of the gradient, Hessian, and Jacobian matrices is a convenient tool for
computing these objects. For example, if we have

f(x) := 3x21 + x1x2x3,

then

∇f(x) =

6x1 + x2x3
x1x3
x1x2

 and ∇2f(x) =

 6 x3 x2
x3 0 x1
x2 x1 0

 .

However, the partial derivatives are not the only tool for computing derivatives. In many cases, it is easier to
compute the gradient, Hessian, and/or Jacobian directly from the definition using the little-o notation.
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3. The Delta Method for Computing Derivatives

Recall that a function f : Rn → R is said to be differentiable at a point x if there is a vector g ∈ Rn such that

(63) f(x+ ∆x) = f(x) + gT∆x+ o(‖∆x‖).

Hence, if we can write f(x + ∆x) in this form, then g = ∇f(x). To see how to use this idea, consider the least
squares objective function

f(x) = 1
2 ‖Ax− b‖

2
2 , where A ∈ Rm×n, b ∈ Rm.

Then

(64)

f(x+ ∆x) = 1
2 ‖A(x+ ∆x)− b‖22

= 1
2 ‖(Ax− b) +A∆x‖22

= 1
2 ‖Ax− b‖

2
2 + (Ax− b)TA∆x+ 1

2 ‖A∆x‖22
= f(x) + (AT (Ax− b))T∆x+ 1

2 ‖A∆x‖22 .

In this expression, 1
2 ‖A∆x‖22 = o(‖∆x‖2) since

1
2 ‖A∆x‖22
‖∆x‖2

= 1
2 ‖A∆x‖2

∥∥∥∥A ∆x

‖∆x‖2

∥∥∥∥
2

→ 0 as ‖∆x‖2 → 0 .

Therefore, by (63), the expression (64) tells us that

∇f(x) = AT (Ax− b).

This approach to computing the derivative of a function is called the delta method. In a similar manner it can be
used to compute the Hessian of f by applying the approach to ∇f :

∇f(x+ ∆x) = AT (A(x+ ∆x)− b) = AT (Ax− b) +ATA∆x = ∇f(x) +ATA∆x,

and, hence, ∇2f(x) = ATA.
Let us now apply the delta method to compute the gradient and Hessian of the quadratic function

f(x) := 1
2x

THx+ gTx, where H ∈ Sn, g ∈ Rn.

Then

f(x+ ∆x) = 1
2 (x+ ∆x)TH(x+ ∆x) + gT (x+ ∆x)

= 1
2x

THx+ gTx+ (Hx+ g)T∆x+ 1
2∆xTH∆x

= f(x) + (Hx+ g)T∆x+ 1
2∆xTH∆x,

where 1
2∆xTH∆x = o(‖∆x‖2) since

1
2∆xTH∆x

‖∆x‖2
= 1

2∆xTH
∆x

‖∆x‖2
→ 0 .

Therefore, by (63), we must have

∇f(x) = Hx+ g .

Again, we compute the Hessian by applying the delta method to the gradient:

∇f(x+ ∆x) = H(x+ ∆x) + g = (Hx+ g) +H∆x = ∇f(x) +H∆x,

and so

∇2f(x) = H .
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4. Differential Calculus

There many further tools for computing derivatives that do not require a direct appeal to either the partial
derivatives or the delta method. These tools allow us to compute new derivatives from derivatives that are already
known based on a calculus of differentiation. We are familiar with this differential calculus for functions mapping R
to R. Here we show how a few of these calculus rules extend to mappings from Rn to Rm. The most elementary of
these are the facts that the derivative of the scalar multiple of a function equals the scalar multiple of the derivative
and the derivative of a sum is the sum of derivatives: given F : Rn → Rm, G : Rn → Rm and α ∈ R,

∇(αF ) = α∇F and ∇(F +G) = ∇F +∇G .

These rules are themselves derivable from the much more powerful chain rule.

Theorem 4.1. Let F : Rn → Rm and H : Rm → Rk be such that F is differentiable at x and H is differentiable
at F (x). The G := H ◦ F is differentiable at x with

∇G(x) = ∇H(F (x)) ◦ ∇F (x) .

Remark 4.1. As noted in Remark 2.1, one must take special care in the interpretation of this chain rule when
k = 1 due to the presence of an additional transpose. In this case,

∇G(x) = ∇F (x)T∇H(F (x)) .

For example, let F : Rn → Rm and consider the function

f(x) := 1
2 ‖F (x)‖22 = ( 1

2 ‖·‖
2
2) ◦ F (x),

that is, we are composing half the 2-norm squared with F . Since ∇( 1
2 ‖·‖

2
2)(y) = y, we have

∇f(x) = ∇F (x)TF (x) .

This chain rule computation can be verified using the delta method:

f(x+ ∆x) = 1
2 ‖F (x+ ∆x)‖22

= 1
2 ‖F (x) +∇F (x)∆x+ o(‖∆x‖2)‖2

2

= 1
2 ‖F (x) +∇F (x)∆x‖22 + (F (x) +∇F (x)∆x)T (o(‖∆x‖2)) + 1

2 ‖o(‖∆x‖2)‖2
2

= 1
2 ‖F (x) +∇F (x)∆x‖2 + o(‖∆x‖2)

= 1
2 ‖F (x)‖22 + (∇F (x)TF (x))T∆x+ 1

2 ‖∇F (x)∆x‖22 + o(‖∆x‖2)

= f(x) + (∇F (x)TF (x))T∆x+ o(‖∆x‖2),

where limt→0
o(t)
t = 0 and we have used this notation as described in Remark 4.1. Hence, again ∇f(x) =

∇F (x)TF (x) .

5. The Mean Value Theorem

Given f : Rn → R, the defining formula for the derivative,

f(y) = f(x) +∇f(x)(y − x) + o(‖y − x‖),
is a powerful tool for understanding the local behavior of the function f near x. If we drop the little-o term from
the right hand side, we obtain the first-order Taylor expansion of f at x. This is called a first-order approximation
to f at x due to the fact that the power of ‖y − x‖ in the error term o(‖y − x‖) is 1. Higher order approximations
to f can be obtained using higher order derivatives. But before turning to these approximations, we make a closer
study of the first-order expansion. Im particular, we wish the extend the Mean Value Theorem to functions of many
variables.

Theorem 5.1. [1-Dimensional Mean Value Theorem]
Let φ| : R→ R be k+ 1 times differentiable on an open interval (a, b) ⊂ R. Then, for every x, y ∈ (a, b) with x 6= y,
there exists a z ∈ (a, b) strictly between x and y such that

φ(y) = φ(x) + φ′(x)(y − x) + · · ·+ 1

k!
φ(k)(x)(y − x)k +

1

(k + 1)!
φ(k+1)(z)(y − x)(k+1) .

We use this results to easily obtain the following mean value theorem for function mapping Rn to R.
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Theorem 5.2. [n-Dimensional Mean Value Theorem]
Let f : Rn → R be differentiable on an open set containing the two points x, y ∈ Rn with x 6= y. Define the closed
and open line segments connecting x and y by

[x, y] := {(1− λ)x+ λy | 0 ≤ λ ≤ y } and (x, y) := {(1− λ)x+ λy | 0 < λ < y } ,

respectively. Then there exists a z, w ∈ (x, y) such that

f(y) = f(x) +∇f(z)T (y − x) and f(y) = f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(z)(y − x).

Proof. Define the function φ : R → R by φ(t) := f(x + t(y − x)). Since f is differentiable, so is φ and the
chain rule tells us that

φ′(t) = ∇f(x+ t(y − x))T (y − x) and φ′(t) = (y − x)T∇2f(x+ t(y − x))(y − x).

By applying the Mean Value Theorem 5.1 to φ we obtain the existence of t, s ∈ (0, 1) such that

f(y) = φ(1) = φ(0) + φ′(t)(1− 0) = f(x) +∇f(x+ t(y − x))T (y − x)

and

f(y) = φ(1) = φ(0) + φ′(0)(1− 0) + 1
2φ
′′(s)(1− 0)2 = f(x) +∇f(x)T (y − x) + 1

2 (y − x)T∇2f(x+ s(y − x))(y − x).

By setting z := x+ t(y − x) and w := x+ s(y − x) we obtain the result. �

In a similar manner we can apply the Fundamental Theorem of Calculus to such functions.

Theorem 5.3. Let f : Rn → R be differentiable on an open set containing the two points x, y ∈ Rn with x 6= y.
Then

f(y) = f(x) +

∫ 1

0

∇f(x+ t(y − x))T (y − x) dt .

Proof. Apply the Fundamental Theorem of Calculus to the function φ defined in the proof of Theorem 5.2. �

Unfortunately, the Mean Value Theorem does not extend to general differentiable function mapping from Rn
to Rm for m > 1. Nonetheless, we have the following approximate result.

Theorem 5.4. Let F : Rn → Rm be differentiable on an open set containing the two points x, y ∈ Rn with
x 6= y. Then

(65) ‖F (y)− F (x)‖2 ≤
[

max
z∈[x,y]

‖F ′(z)‖F

]
‖y − x‖2 .

Proof. By the Fundamental Theorem of Calculus, we have

F (y)− F (x) =


∫ 1

0
∇F1(x+ t(y − x))T (y − x) dt

...∫ 1

0
∇Fm(x+ t(y − x))T (y − x) dt

 =

∫ 1

0

∇F (x+ t(y − x))(y − x) dt .

Therefore,

‖F (y)− F (x)‖2 =

∥∥∥∥∫ 1

0

∇F (x+ t(y − x))(y − x) dt

∥∥∥∥
2

≤
∫ 1

0

‖∇F (x+ t(y − x))(y − x)‖2 dt

≤
∫ 1

0

‖∇F (x+ t(y − x))‖F ‖y − x‖2 dt

≤
[

max
z∈[x,y]

‖F ′(z)‖F

]
‖y − x‖2 .

�
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The bound (65) is very useful in many applications. But it can be simplified in cases where ∇F is known to be
continuous since in this case the Weierstrass extreme value theorem says that, for every β > 0,

max
z∈βB

‖F ′(z)‖F =: K <∞ .

Hence, by Theorem 5.4,
‖F (x)− F (y)‖2 ≤ K ‖x− y‖2 ∀ x, y ∈ βB .

This kind of inequality if extremely useful and leads to the following notion of continuity.

Definition 5.1. [Lipschitz Continuity]
We say that F : Rn → Rm is Lipschitz continuous on a set S ⊂ Rn if there exists a constant K > 0 such that

‖F (x)− F (y)‖ ≤ K ‖x− y‖ ∀ x, y ∈ S .

The constant K is called the modulus of Lipschitz continuity for F over S, and depends on the choice of norms for
Rn and Rm.

As one application of Lipschitz continuity, we give the following lemma concerning the accuracy of the first-order
Taylor approximation of a function.

Lemma 5.1. [Quadratic Bound Lemma]
Let F : Rn → Rm be such that ∇F is Lipschitz continuous on the set S ⊂ Rn. If x, y ∈ S are such that [x, y] ⊂ S,
then

‖F (y)− (F (x) +∇F (x)(y − x))‖2 ≤
K

2
‖y − x‖22 ,

where K is the modulus of Lipschitz continuity for ∇F on S.

Proof. Observe that

F (y)− F (x)−∇F (x)(y − x) =
∫ 1

0
∇F (x+ t(y − x))(y − x)dt−∇F (x)(y − x)

=
∫ 1

0
[∇F (x+ t(y − x))−∇F (x)](y − x)dt.

Hence

‖F (y)− (F (x) +∇F (x)(y − x))‖2 =
∥∥∥∫ 1

0
[∇F (x+ t(y − x))−∇F (x)](y − x)dt

∥∥∥
2

≤
∫ 1

0
‖(∇F (x+ t(y − x)−∇F (x))(y − x)‖2 dt

≤
∫ 1

0
‖∇F (x+ t(y − x))−∇F (x)‖F ‖y − x‖2 dt

≤
∫ 1

0
Kt ‖y − x‖22 dt

= K
2 ‖y − x‖

2
2 .

�

The Mean Value Theorem also allows to obtain the following second order approximation.

Theorem 5.5. Let f : Rn → R and suppose that ∇2f(x) exists. Then

(66) f(y) = f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(x)(y − x) + o(‖y − x‖2).

Proof. The mean value theorem tells us the for every y ∈ x+ εB there is a z ∈ (x, y) such that

f(y) = f(x) +∇f(z)T (y − x)

= f(x) + (∇f(x) +∇2f(x)(y − x) + o(‖y − x‖))T (y − x)

= f(x) +∇f(x)T (y − x) + 1
2 (y − x)T∇2f(x)(y − x) + o(‖y − x‖2).

�

If we drop the o(‖y − x‖2) in the equation (66), we obtain the second-order Taylor approximation to f at x.

This is a second-order approximation since the power of ‖y − x‖ in the little-o term is 2, i.e., o(‖y − x‖2).
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