Math 408

Homework Set 8

(1) Locate all of the KKT points for the following problems. Can you show that these points are local solutions? Global solutions?

(a)

$$\begin{array}{ll} \text{minimize} & e^{(x_1-x_2)} \\ \text{subject to} & e^{x_1}+e^{x_2} \leq 20 \\ & 0 \leq x_1 \end{array}$$

(b)

minimize
$$e^{(-x_1+x_2)}$$

subject to $e^{x_1} + e^{x_2} \le 20$
 $0 \le x_1$

(c)

minimize
$$x_1^2 + x_2^2 - 4x_1 - 4x_2$$

subject to $x_1^2 \le x_2$
 $x_1 + x_2 \le 2$

(d)

minimize
$$\frac{1}{2}||x||^2$$

subject to $Ax = b$

where $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ satisfies Nul $(A^T) = \{0\}$.

(2) Show that the set

$$\Omega := \{ x \in \mathbb{R}^2 | -x_1^3 \le x_2 \le x_1^3 \}$$

is not regular at the origin. Graph the set Ω .

- (3) Construct an example of a constraint region of the form (??) at which the MFCQ is satisfied, but the LI condition is not satisfied.
- (4) Suppose $\Omega = \{x : Ax \leq b, Ex = h\}$ where $A \in \mathbb{R}^{m \times}, E \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^m$, and $h \in \mathbb{R}^k$.
 - (a) Given $x \in \Omega$, show that

$$T_{\Omega}(x) = \{d : A_{i} \cdot d \le 0 \text{ for } i \in I(x), Ed = 0\},\$$

where A_i denotes the *i*th row of the matrix A and $I(x) = \{i \ A_i \cdot x = b_i\}$.

- (b) Given $x \in \Omega$, show that every $d \in T_{\Omega}(x)$ is a feasible direction for Ω at x.
- (c) Note that parts (a) and (b) above show that

$$T_{\Omega}(x) = \bigcup_{\lambda > 0} \lambda(\Omega - x)$$

whenever Ω is a convex polyhedral set. Why?

(5) Let $C \subset \mathbb{R}^n$ be non-empty, closed and convex. For any $x \in \mathbb{R}^n$ consider the problem of finding the closest point in C to x using the 2-norm:

$$\mathcal{D} \quad \text{minimize} \quad \frac{1}{2} \|x - z\|_2^2 \\ \text{subject to} \quad x \in C$$

Show that $\bar{z} \in C$ solves this problem if and only if

$$\langle x - \bar{z}, z - \bar{z} \rangle \le 0$$
 for all $z \in C$.

(6) Let Ω be a non-empty closed convex subset of \mathbb{R}^n . The geometric object *dual* to the tangent cone is called the *normal cone*:

$$N_{\Omega}(x) = \{z : \langle z, d \rangle \le 0, \text{ for all } d \in T_{\Omega}(x)\}.$$

(a) Show that if \bar{x} solves the problem $\min\{f(x): x \in \Omega\}$ then

$$-\nabla f(\bar{x}) \in N_{\Omega}(\bar{x}).$$

(b) Show that

$$N_{\Omega}(\bar{x}) = \{z : \langle z, x - \bar{x} \rangle \le 0, \text{ for all } x \in \Omega \}.$$

(c) Let $\bar{x} \in \Omega$. Show that \bar{x} solves the problem $\min\{\frac{1}{2}||x-y||_2^2: x \in \Omega\}$ for every $y \in \bar{x} + N_{\Omega}(\bar{x})$.

(7) Consider the functions

$$f(x) = \frac{1}{2}x^{\mathsf{\scriptscriptstyle T}}Qx - c^{\mathsf{\scriptscriptstyle T}}x$$

and

$$f_t(x) = \frac{1}{2}x^T Q x - c^T x + t\phi(x),$$

where t > 0, $Q \in \mathbb{R}^{n \times n}$ is semi-positive definite, $c \in \mathbb{R}^n$, and $\phi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is given by

$$\phi(x) = \begin{cases} -\sum_{i=1}^{n} \ln x_i & \text{, if } x_i > 0, \ i = 1, 2, \dots, n, \\ +\infty & \text{, otherwise.} \end{cases}$$

- (a) Show that ϕ is a convex function.
- (b) Show that both f and f_t are convex functions.
- (c) If Q is positive definite, show that the solution to the problem min $f_t(x)$ always exists and is unique.
- (d) Let $\{t_i\}$ be a decreasing sequence of positive real scalars with $t_i \downarrow 0$, and let x^i be the solution to the problem $\min f_{t_i}(x)$. Show that if the sequence $\{x^i\}$ has a cluster point \bar{x} , then \bar{x} must be a solution to the problem $\min\{f(x):0\leq x\}$.

Hint: Use the KKT conditions for the QP $\min\{f(x): 0 \le x\}$.