
FINAL EXAM GUIDE SOLUTIONS
MATH 208A Exam Date: December 13, 2021

The exam will have 6 questions with each question being multipart. As with the midterm exam, the
questions are not equally weighted. The exam covers all of the key concepts introduced in this course.
Specifically, it covers the material in Sections 1.1, 1.2, 2.1, 2.1, 2.3, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1,
5.2, 6.1, and 6.2 of the text. In particular, this means that the exam does not test on the orthogonality
material covered in class. You are allowed one handwritten 8.5 by 11 sheet of notes is allowed (2-sided is
OK), and you are allowed a nonprogrammable calculator (the Texas Instruments TI-30X IIS is the official
Math Dept approved calculator). A loose description of the content of each question is given below along
with sample questions for the purposes of illustration and practice. The rules for the exam are listed at
the end of this guide.

Question 1: Samples

Our general tool for solving systems of the form Ax = b, where A ∈ Rn×m and b ∈ Rn is to
reduce the augmented system [A|b] to echelon form using the elementary row operations. Since
the elementary row operations are equivalent to multiplying the augmented matrix [A|b] on the
left by an invertible elementary matrix G1, we find after the first elementary row operation that
we have the augmented matrix G1[A|b] = [G1A|G1b] and after the second, we have G2G1[A|b] =
G2[G1A|G1b] = [G2G1A|G2G1b], and after k elementary row operations we have

G[A|b] = Gk · · ·G2G1[A|b] = [Gk · · ·G2G1A|Gk · · ·G2G1b] = [GA|Gb],

where G = Gk · · ·G2G1. Now suppose we apply the same elementary row operations to the
augmented matrix [A|I]. The we would get

G[A|I] = Gk · · ·G2G1[A|I] = [Gk · · ·G2G1A|Gk · · ·G2G1] = [GA|G],

that is, we would recover the matrix G that puts A into echelon form.
(a) Consider the linear system

x1 + x2 + 3x3 + 2x4 + 2x5 = 2
2x1 + x2 + 5x3 + x4 + 2x5 = −2
4x1 + 3x2 + 11x3 + 3x4 + 4x5 = 2
3x1 + 2x2 + 8x3 + 3x4 + 4x5 = 0

.

(i) Write the augmented matrix A associated with this system.
(ii) Compute an echelon form for this matrix.
(iii) Compute a reduced echelon form for this augmented matrix.

Solution:

1 1 3 2 2 1 0 0 0
2 1 5 1 2 0 1 0 0
4 3 11 3 4 0 0 1 0
3 2 8 3 4 0 0 0 1
1 0 2 −1 0 −1 1 0 0
0 1 1 1 0 0 −2 1 0 echelon
0 0 0 2 2 2 1 −1 0 form
0 0 0 0 0 −1 −1 0 1
1 0 2 0 1 0 3/2 −1/2 0 reduced
0 1 1 0 −1 −1 −5/2 3/2 0 echelon
0 0 0 1 1 1 1/2 −1/2 0 form
0 0 0 0 0 1 1 0 −1

1
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Then G = 1
2


0 3/2 −1/2 0
−1 −5/2 3/2 0
1 1/2 −1/2 0
1 1 0 −1

 with GA = B where

A =


1 1 3 2 2
2 1 5 1 2
4 3 11 3 4
3 2 8 3 4

 and B =


1 0 2 0 1
0 1 1 0 −1
0 0 0 1 1
0 0 0 0 0

 .

(iv) Write a description of the set of solutions to this system in vector form.
(v) If B is the reduced echelon form for the augmented matrix, compute an

invertible matrix G ∈ R4×4 such that GA = B.
(vi) Let c0 = (2, −2, 2, 0)T be the vector given by the right-hand side of the linear

system given above. Compute the vector Gc0 and explain the relationship of
this vector to the solution set to this linear system.

Solution: Write x̄ = G


2
−2
2
0

 =


−4
6
0
0

. Then the solution set is given by

solving the augmented system [B|x̄]. or

1 0 2 0 1 −4
0 1 1 0 −1 6
0 0 0 1 1 0
0 0 0 0 0 0

giving the solution set


−4
6
0
0
0

+ t


−2
−1
1
0
0

+ s


−1
1
0
−1
1

 : s, t ∈ R

 .

(vii) Let c1 = (1, 1, 1, 2)T . Use the matrix G to describe the set of solutions to
the linear system obtained from the system above by replacing the right-hand
side vector c0 by the the vector c1.

Solution: Write G


1
1
1
2

 =


1
−2
1
0

 so the associated augmented system is

1 0 2 0 1 2
0 1 1 0 −1 −2
0 0 0 1 1 1
0 0 0 0 0 0
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yielding the solutions set


1
−2
0
1
0

+ t


−2
−1
1
0
0

+ s


−1
1
0
−1
1

 : s, t ∈ R

 .

(viii) Suppose the right-hand side vector of the linear system given above is evolving
in time. You are given 1000 right-hand side vectors for the linear system
where ci ∈ R4 the right-hand side at time point ti for i = 1, 2, . . . , 1000.
Describe a process for solving all of these linear systems by taking the product
of two matrices (Hint: One of these matrices is in R4×4 and the other is in
R4×10,000).

Solution: Write Gci =


xi1
xi2
xi3
xi4

 , i = 1, 2, . . . , 1000 yielding the associated

augmented system

B =

1 0 2 0 1 xi1
0 1 1 0 −1 xi2
0 0 0 1 1 xi3
0 0 0 0 0 xi4

.

Hence, for every j ∈ {1, 2, . . . , 1000} for which xi4 6= 0, the system Ax = ci is
inconsistent (Why?), while for every j ∈ {1, 2, . . . , 1000} for which xi4 = 0,
we obtain the solution set


xi1
xi2
0
xi3
0

+ t


−2
−1
1
0
0

+ s


−1
1
0
−1
1

 : s, t ∈ R

 .

(b) Answer questions (i)-(v) of (a) for the linear system

x1 + x2 + 2x3 + x4 + x5 = 2
x1 + 3x2 − 2x3 − 3x4 + 5x5 = −2

2x1 + 5x2 − 2x3 − 2x4 + 6x5 = 2
.

Question 2: This question concerns the concept of a subspace, linear independence, bases, dimen-
sion. Of particular importance are the subspaces Ran (A) = col(A), Nul (A), Ran

(
AT
)

= row(A),

and Nul
(
AT
)
, how to compute bases for each using (reduced) echelon form, and the Rank Plus

Nullity Theorem.

(a) For the following two matrices compute bases for the subspaces Ran (A) = col(A),
Nul (A), Ran

(
AT
)

= row(A), and Nul
(
AT
)

and give the dimension of each of
these subspaces.

(i) A =


1 2 3 2 2
2 1 5 1 2
4 3 11 3 4
3 2 8 3 4
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Solution: Compute

[GA|G] =

1 0 0 0 3 2 13/2 −7/2 0
0 1 0 0 0 1 1 0 −1
0 0 1 0 −1 −1 −5/2 3/2 0
0 0 0 1 1 0 −1/2 −1/2 1

G =
1

2


4 13 −7 0
2 2 0 −2
−2 −5 3 0
0 −1 −1 2

 .
Therefore,


1
2
4
3

 ,


2
1
3
2

 ,


3
5
11
8

 ,


2
1
3
3


 is a basis for Ran (A) (or just use the standard basis as A is onto),




−3
0
1
−1
1


 is a basis for Nul (A),




1
0
0
0
3

 ,


0
1
0
0
0

 ,


0
0
1
0
−1

 ,


0
0
0
1
1


 is a basis for Ran

(
AT
)
, and

A is onto so Nul
(
AT
)

= {0}

(ii) A =

1 1 2 1 1
1 3 −2 −3 5
2 5 −2 −2 6


(b) For the matrices A in part (a) chose a basis for the row space of A from the rows

of A.
(c) Answer the following questions for the matrices A = [S T ] and B = AT where

S ∈ Rn×n is invertible and T ∈ Rn×t with t ≥ 1.

Solution: To answer the following questions observe that rank(AT ) = rank(A) =
rank(S) = n and nullity(A) = (n+ t)− rank(A) = t.

(i) Is A onto? Is A one to one? What is the rank of A? What is the nullity of
A?

Solution: A is onto since rank(A) = n. A is not one to one since nullity(A) =
t ≥ 1.

(ii) Is B onto? Is B one to one? What is the rank of B? What is the nullity of
B?

Solution: B is not onto since rank(B) = rank(AT ) = n < n+ t. B is one to
one since nullity(B) = n− rank(B) = 0.

(iii) Set L =

[
S T
0 K

]
where K ∈ Rt×t. Under what conditions is L both onto

and one to one?

Solution: K needs to be invertible since then L is invertible because det (L) =
det (S)det (K) 6= 0.

Solution: For (d)-(j) see midterm guide 2.
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(d) Let A ∈ R2×3 be such that Ran (A) = Span

[(
1
1

)]
. Give two different examples

of such a matrix A.

(e) Suppose A ∈ R3×3 is such that Ran (A) = Span

1
1
1

 ,

 2
−1
0

 = S.

(i) What is the nullity of A?

(ii) Give an example of a matrix A with Ran (A) = S and

1
1
1

 ∈ Nul (A).

(f) Let A,B ∈ Rn×m be equivalent matrices. Answer the following true or false
questions.

(i) Nul (A) = Nul (B) : © True © False
(ii) Ran (A) = Ran (B) : © True © False

(g) Let x ∈ Rn and y ∈ Rm be nonzero vectors and consider the matrix A = xyT .
(i) If A ∈ Rs×t, what are s and t?

(ii) What are rank(A) and nullity(A)?
(h) Compute a basis Ran (A), Nul (A), Ran

(
AT
)
, and Nul

(
AT
)

where

A =

 1 −1 −3 0
1 0 2 1
−1 3 −5 2

 .
(i) Compute a basis Ran (A), Nul (A), Ran

(
AT
)
, and Nul

(
AT
)

where

A =


3 1 2 5 6
2 0 1 4 6
1 2 1 0 3
2 1 0 3 −3

 .
(j) Let A ∈ Rn×k and B ∈ Rk×m.

(i) If AB ∈ Rs×t what are s and t?
(ii) If rank(A) = n and rank(B) = k, what can be said about rank(AB)?
(iii) If nullity(A) = 0 and nullity(B) = 0, what can be said about nullity(AB)?
(iv) If n = m, and k ≤ n, under what conditions is AB invertible?

Question 3: This question concerns linear transformations and their matrix representation, matrix
algebra including the relationship between matrix multiplication and the composition of linear
transformations, and the inverse of a matrix including its computation, and properties, their use
in solving linear systems including the relationship to echelon form and the equivalence of linear
systems.

(a) Let T : Rm 7→ Rn be a linear tranformation. Let {b1, b2, . . . , bm} be a basis for
Rm and suppose that T (bi) = yi for yi ∈ Rn, i = 1, 2, . . . ,m. In terms of the
matrices B = [b1 b2 . . . bm] and Y = [y1 y2 . . . ym] derive an expression for the
matrix A such that T = TA, i.e. T (x) = Ax.

Solution: If T = TA, then AB = Y so A = Y B−1 since B is invertible.

(b) Let T : R3 7→ R3 be such that

T (e1) =

 1
−2
1

 , T (e2) =

3
2
2

 , T (e3) =

1
0
1

 .

Find a matrix A such that T = TA. (Hint: Use the result from part (a) above.)
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Solution: A =

 1 3 1
−2 2 0
1 2 1

.

(c) Let T : R3 7→ R2 be such that

T

1
1
1

 =

(
1
1

)
, T

 2
1
−1

 =

(
2
1

)
T

 1
0
−1

 =

(
−1
2

)
.

Find a matrix A such that T = TA.

Solution: Since the columns of B =

1 2 1
1 1 0
1 −1 −1

 are linearly independent, we

know from the observation in part (a) that A = Y B−1 where Y =

[
1 2 −1
1 1 2

]
.

The usual computation shows that B−1 =

 1 −1 1
−1 2 −1
2 −3 1

 so

A =

[
1 2 −1
1 1 2

] 1 −1 1
−1 2 −1
2 −3 1

 =

[
−3 6 −2
4 −5 2

]
.

(d) Let A =

 1 −1 −3 0
1 0 2 1
−1 3 −5 2

 . If B is an echelon form for A, give an invertible

matrix G such that GA = B. Also give G−1.

Solution:

G =
1

2

 2 −2 −2
−3 8 5
−1 2 1

 and G−1 =

 1 1 −3
1 0 2
−1 1 −5

 .
(e) Give an example of a matrix A having no zero entries whose range is

Span

1
1
1

 ,

 1
−1
1


and has a two dimensional null space.

(f) Let u ∈ Rn and v ∈ Rm. Give an example of a matrix A such that Ran (A) =
Span [u] and Nul (A) =

{
x ∈ Rm : vTx = 0

}
. What are the rank and nullity of

A?

Solution: A = uvT . rank(A) = 1 since Ran (A) = Span [u] and nullity(A) =
m− rank(A) = m− 1

Question 4: This question concerns basis representations for subspaces using bases, the coordinate
representation of vectors in a given basis, the computation of coordinate transformation matrices
allowing the transformation of the coordinates of a vectors between bases, and the change of bases
matrices for subspaces of Rn and their computation.
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(a) Compute the coordinate transformation matrix for the basis

B =


 1
−1
2

 ,

1
0
4

 ,

−2
4
1

 ,

that is, compute the matrix W such that [x]B = Wy for any vector y ∈ R3 where
[x]B ∈ R3 is the vector containing the coordinates of y in the basis B. Then give

the coordinates of the vector y =

1
2
3

 in the basis B.

Solution: W =

 1 1 −2
−1 0 4
2 4 1

−1 =

−16 −9 4
9 5 −2
−4 −2 1

 so

[y]B = Wy =

−16 −9 4
9 5 −2
−4 −2 1

1
2
3

 =

−22
13
−5

.

(b) Consider the following two bases for the subspace S ⊂ R5:

B1 =




1
1
1
1
1

 ,


1
−1
1
−1
1


 , B2 =




1
0
1
0
1

 ,


0
1
0
1
0


 .

Compute the coordinate transformation matrix C such that [y]B2 = C[y]B1 for all

y ∈ S. Then compute y and [y]B2 for [y]B1 =

(
5
−1

)
. Next, compute the coordinate

transformation matrix C such that [y]B1 = C[y]B2 for all y ∈ S. Then compute y

and [y]B1 for [y]B2 =

(
−1
2

)
.

Solution: C = 1
2

[
1 1
1 −1

]
and C−1 =

[
1 1
1 −1

]
so [y]B1 = C[y]B2 for all y ∈ S,

and [y]B2 = C−1[y]B1 for all y ∈ S.

(c) Consider the following two bases for the subspace S ⊂ R5:

B1 =




1
1
1
2

 ,


1
−1
−2
1


 , B2 =



−1
5
8
1

 ,


1
−3
−5
0


 .

(i) Compute the coordinate transformation matrix C such that [y]B1 = C[y]B2
for all y ∈ S.

(ii) Then compute y and [y]B1 for [y]B2 =

(
3
−2

)
.

Solution: C =

[
2 −1
−3 2

]
and C−1 =

[
2 1
3 2

]
so [y]B1 = C[y]B2 for all y ∈ S, and

[y]B2 = C−1[y]B1 for all y ∈ S.



8

(d) Do the vectors the sets B1 and B2 (given below) span the same subspace of R5?

B1 =




1
0
2
0
1

 ,


0
1
1
0
−1

 ,


0
0
0
1
1


 B2 =




1
1
3
2
2

 ,


2
1
5
1
2

 ,


4
3
11
3
4


 .

If they do span the same subspace, compute the coordinate transformation matrix
C for which [y]B1 = C[y]B2 for all y ∈ R5. (Hint: Start by trying to compute C
and see what happens.)

Solution: C =

1 2 4
1 1 3
2 1 3


Question 5: This question concerns the determinant of a matrix including its properties, compu-
tation, use, and relationship to linear systems.

(a) Use the properties of the deteminant to compute the determinant of the following
matrices.

(i) A =


2 1 2 −7 11 24
1 2 1 1 −17 2
0 0 1 −1 6 8
0 0 1 4 −2 −5
0 0 0 0 2 3
0 0 0 0 1 2


Solution: |A| =

∣∣∣∣ 2 1
1 2

∣∣∣∣ ∣∣∣∣ 1 −1
1 4

∣∣∣∣ ∣∣∣∣ 2 3
1 2

∣∣∣∣ = 3 · 5 · 1 = 15.

(ii) B =


1 3 2 1
0 2 4 1
0 0 −5 0
0 0 5 6


Solution: |B| = 1 · 2 · (−5) · 6 = −60.

(iii) C =


1 0 0 1
0 2 2 0
0 2 4 0
−1 0 0 1


Solution: Reduce

1 0 0 1
0 2 2 0
0 2 4 0
−1 0 0 1

1 0 0 1
0 2 2 0
0 0 2 0
0 0 0 2

.

so |C| = 1 · 2 · 2 · 2 = 8.

(b) Let M =

[
A B
C D

]
where A ∈ Rs×s is invertible, B ∈ Rs×t, C ∈ Rt×s, and

D ∈ Rt×t.
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(i) Compute the matrix product

[
Is 0

−CA−1 It

] [
A B
C D

]
.

Solution:

[
Is 0

−CA−1 It

] [
A B
C D

]
=

[
A B
0 D − CA−1B

]
.

(ii) Use the computation above to show that det (M) = det (A)det (D−CA−1B).

Solution:

det (M) = det

([
Is 0

−CA−1 It

])
det (M)

= det

([
Is 0

−CA−1 It

])
det

([
A B
C D

])
= det

([
Is 0

−CA−1 It

] [
A B
C D

])
= det

([
A B
0 D − CA−1B

])
= det (A)det (D − CA−1B).

(c) Let the columns of the matrix B = [b1 b2, . . . , bm] ∈ Rm×m form a basis for Rm

and suppose that T : Rm 7→ Rm is a linear transformation such that T (bi) =
yi ∈ Rm, i = 1, 2, . . . ,m. If A ∈ Rm×m is such that T = TA (TA(x) = Ax for all

x ∈ Rm), show that det (A) = det (Y )
det (B) , where Y = [y1, y2, . . . , ym]. (Hint: Review

the solution to question 3 part (a).)

Solution: TA(bi) = Abi, so AB = [Ab1, Ab2, . . . , Abm] = [[y1, y2, . . . , ym] = Y
which gives A = Y B−1. Therefore, det (A) = det (Y B−1) = det (Y )det (B−1) =
det (Y )det (B)−1.

Question 6: This question concerns the eigenvectors and eigenvalues of an n×n real matrix. This
includes the eigenspace associated with an eigenvalue, the characteristic polynomial, the compu-
tation of eigenvalues and eigenvectors, the algebraic and geometric multiplicity of eigenvalues, and
diagonalizable matrices and their properties.

(a) Compute the eigenvalues and eigenvectors of the matrix A =

−1 −1 0
3 1 −1
−5 −1 2

.

The give both the algebraic and geometric multiplicity of each of the eigenvalues
of A.

Solution: The characteristic polynomial is p(λ) = −λ(1− λ)2 so the eigenvalues
are λ = 0 with algebraic multiplicity 1 and λ = 1 with algebraic multiplicity 2. The

eigenvalue λ = 0 yields the eigenvector

 1
−1
2

 giving geometric multiplicity 1, and

the eigenvalue λ = 1 yields the eigenvector

 1
−2
3

 giving geometric multiplicity 1.



10

(b) Compute the eigenvalues and eigenvectors of the matrix A =

2 −1 1
1 2 1
1 1 2

. The

give both the algebraic and geometric multiplicity of each of the eigenvalues of A.

Solution: The characteristic polynomial is p(λ) = (1 − λ)(2 − λ)(3 − λ) so the
eigenvalues are 1,2, and 3 each with algebraic multiplicity 1 which implies that

their geometric multiplicity is also 1. The eigenvector for λ = 1 is

−1
0
1

, the

eigenvector for λ = 2 is

−1
1
1

, and the eigenvector for λ = 3 is

0
1
1

.

(c) Consider the two matrices

A =


3 −1 0 0
1 1 0 0
0 0 3 −1
0 0 1 1

 B =


3 −1 0 0
1 1 1 0
0 0 3 −1
0 0 1 1

 .
Compute the eigenvalues and eigenvectors of each and give both the algebraic and
geometric multiplicity of each.

Solution: By using the block diagonal structure it follows that he characteristic
polynomial for both matrices is p(λ) = (λ − 2)4. So λ = 2 is the only eigenvalue
for both matrices. For the first matrix we get two eigenvectors

1
1
0
0

 and


0
0
1
1

 ,

so the geometric multiplicity is 2. For the second matrix


1
1
0
0

 is the only eigen-

vector so the geometric multiplicity is 1.

(d) Let A ∈ Rn×n and let P ∈ Rn×n be invertible. Show that if λ ∈ R is an eigen-
value of A with associated eigenvector x, then λ is an eigenvalue of B = PAP−1

associated with eigenvector y = Px.

Solution: By = PAP−1Px = PAx = λPx = λy.

(e) Let u ∈ Rn be such that uTu = 1 and set A = In−uuT . Compute the eigenvalues
of A and their associated eigenvectors. In particular, show that A is diagonalizable.

Solution: First observe that A2 = (I − uuT )(I − uuT ) = I − uuT − uuT +
uuTuuT = (I − uuT ) = A. Since Au = 0, u is an eigenvector with eigenvalue 0.
Observe that 0 = Aw = w − (uTw)u which implies that w is a multiple of u. Let
{u,w2, w3, . . . , wn} be a basis for Rn. Then Awi 6= 0, i− 2, . . . , n since if Awi = 0
then wi is a multiple of u which contradicts the linear independence of the vectors
{u,w2, w3, . . . , wn}. Set ŵi = Awi = (I − uuT )wi, i = 2, . . . , n. Then Aŵi =
AAwi = A2wi = Awi = ŵi so that every ŵi is an eigenvector of A with eigenvalue
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1. Moreover, the vectors ŵi, i = 2, . . . , n are linearly independent since otherwise
there exist µi such that 0 = µ2ŵ2 + · · · + µnŵn = (I − uuT )(µ2w2 + · · · + µnwn)
so that µ2w2 + · · · + µnwn is a multiple of u which again contradicts the linear
independence of the vectors {u,w2, w3, . . . , wn}. Hence the geometric multiplicity
of the eigenvalue 1 is (n− 1) and the geometric multiplicity of the eigenvalue 0 is
1. Therefore, A is diagonalizable with A = PDP−1 where P = [u,w2, w3, . . . , wn]
and

D =


0 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . .
...

...
. . . 0

0 . . . . . . 1

 .


