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Motivation

Optimization in Large-Scale Inference

o A range of large-scale data science applications can be
modeled using optimization:
- Inverse problems (medical and seismic imaging )

- High dimensional inference (compressive sensing, LASSO,
quantile regression)

- Machine learning (classification, matrix completion, robust
PCA, time series)

e These applications are often solved using side information:
- Sparsity or low rank of solution
- Constraints (topography, non-negativity)
- Regularization (priors, total variation, “dirty” data)

e We need efficient large-scale solvers for nonsmooth
programs.
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Foundations of Nonsmooth Methods for NLP

I. I. EREMIN, The penalty method in convex programming,
Soviet Math. Dokl., 8 (1966), pp. 459-462.

W. 1. ZANGWILL, Nonlinear programming via penalty functions,
Management Sci., 13 (1967), pp. 344-358.

T. PIETRZYKOWSKI, An exact potential method for constrained
maxima, STAM J. Numer. Anal., 6 (1969), pp. 299-304.
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The Prototypical Problem

Sparse Data Fitting:

Find sparse z with Az ~ b

There are numerous applications;
e system identification
e image segmentation
e compressed sensing

e grouped sparsity for remote sensor location
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BPDN LASSO Lagrangian (Penalty)
min [l min 3|As— b3 min %Az — b+ Allells
st. iAz—b3<o st |z <7

e BPDN: often most natural and transparent.
(physical considerations guide o)

e Lagrangian: ubiquitous in practice.
(“no constraints”)

‘All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08)
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Optimal Value or Level Set Framework

Problem class: Solve

min  ¢(z) o)
st. p(Adz—b) <o
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Optimal Value or Level Set Framework

Problem class: Solve

min  ¢(x)
zeX 7)(0)
st. p(Adz—b) <o
Strategy: Consider the “flipped” problem
v(7) :==min p(Az —b)
zeX Q(T)
st. o(z) <7

Then opt-val(P(c)) is the minimal root of the equation

(1) =0
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Queen Dido’s Problem

The intuition behind the proposed framework has a
distinguished history, appearing even in antiquity. Perhaps the
earliest instance is Queen Dido’s problem and the fabled origins
of Carthage.

In short, the problem is to find the maximum area that can be
enclosed by an arc of fixed length and a given line. The
converse problem is to find an arc of least length that traps a
fixed area between a line and the arc. Although these two
problems reverse the objective and the constraint, the solution
in each case is a semi-circle.
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The intuition behind the proposed framework has a
distinguished history, appearing even in antiquity. Perhaps the
earliest instance is Queen Dido’s problem and the fabled origins
of Carthage.

In short, the problem is to find the maximum area that can be
enclosed by an arc of fixed length and a given line. The
converse problem is to find an arc of least length that traps a
fixed area between a line and the arc. Although these two
problems reverse the objective and the constraint, the solution
in each case is a semi-circle.

Other historical examples abound (e.g. the isoperimetric
inequality). More recently, these observations provide the basis
for the Markowitz Mean-Variance Portfolio Theory.
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Convex Sets
Let C' C R™. We say that C is convex if
(1 =Xz + Ay € C whenever z,y € Cand 0 < A < 1.
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The Role of Convexity

Convex Sets
Let C' C R™. We say that C is convex if
(1 =Xz + Ay € C whenever z,y € Cand 0 < A < 1.
Convex Functions
Let f : R® = R:= R U {400}. We say that f is convex if the
set
epi (f) :={(z,p) : f(z) <p}

is a convex set.

r(xlyf(xl))

X1 Ax;+(1-NMx, X2

F(L =Nz + Aze) < (1= A)f(z1) + Af(22)
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Convex Functions

Convex indicator functions
Let C € R™. Then the function

is a convex function.

,ifz e C,
Jifz ¢ C|
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Convex Functions

Convex indicator functions
Let C € R™. Then the function

So(z) = {0 ,%fme C,
+oo Lifxz ¢ C,
is a convex function.
Addition
Non-negative linear combinations of convex functions are
convex: f; convex and A\; > 0,7=1,...,k

f(@) =5 Nifi(2).

Infimal Projection
If f : R" x R™ — R is convex, then so is
v(z) :=infy f(z, y),
since
epi(v) ={(z,p) : Iy € st. f(z,y) <p}
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Convexity of v

When X, p, and ¢ are convex, the optimal value function v is a
non-increasing convex function by infimal projection:

v(T) = gél)l(l p(Az —b) st. o(z)<T

= min  p(Az — b) + Gepj (4)(2, T) + dx(2)
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Newton and Secant Methods

For f convex and non-increasing, solve f(7) = 0.
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Newton and Secant Methods

For f convex and non-increasing, solve f(7) = 0.

400
350
300F
250
200F
150
100p = = = = = = = < e eeeenas N e 1
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The problem is that f is often not differentiable.

Use the convex subdifferential
Of (@) :={z: fly) = fle)+2"(y—2) VyeR"}
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Superlinear Convergence

Let 7 := inf{7 : f(7) <0} and assume

g :=inf{g: g€df(r.)} <0 (non-degeneracy)
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Superlinear Convergence

Let 7 := inf{7 : f(7) <0} and assume
g :=inf{g: gedf(r)} <0 (non-degeneracy)

Initialization: 7_1 < 19 < T

if =0
Thyl i= {:k if f(m) =0, (Newton)

_ % [for gr € Of(1x)] otherwise;

and

(Secant)

Tk—Tk—1

Tk = mf(Tk) otherwise.

{m if f(3,) = 0,
Tk+1 =
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Superlinear Convergence

Let 7 := inf{7 : f(7) <0} and assume
g :=inf{g: gedf(r)} <0 (non-degeneracy)

Initialization: 7_1 < 19 < T

T if f(m,) =0,
Tha1 i= {Tk ) 1) (Newton)

o [for g € Of (1)] otherwise;

and

Th+1 = Th—Th—1 th . (Secant)
Tk~ T/ (Tk)  otherwise.

If either sequence terminates finitely at some 7, then 7, = 7y;
otherwise,

|7 — o] < (1—9—;)|u7¢k|, k=1,2,...,

where 75, = g (Newton) and v € 0f (15—1) (secant). In either case,
Y& T g+« and 7% T 7, globally g-superlinearly.
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Inexact Root Finding

e Problem: Find root of the inexactly known convex function

v(-) —o.
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Inexact Root Finding

e Problem: Find root of the inexactly known convex function

v(-) —o.

e Bisection is one approach

e nonmonotone iterates (bad for warm starts)
e at best linear convergence (with perfect information)

e Solution:

e modified secant
e approximate Newton methods
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Inexact Root Finding: Secant
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Question: What precision guarantees convergence?
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Inexact Root Finding: Convergence
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Then both algorithms return 7 with v(7) < € in

) (Iogz/a (%)) iterations

7__
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Inexact Root Finding: Convergence

Question: What precision guarantees convergence?
Answer: We need 1 < § < a, where a € [1,2).

Then both algorithms return 7 with v(7) < € in

0 <Iog2/a <%>) iterations

7_.

Key observation: (' = (/(1p) is independent of duv(7*).

Nondegeneracy not required.
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Minorants from Duality

v(7T) = max ®(y,7)
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Robustness: 1 < u/l < a, where a € [1,2) and € = 1072

14 16 121
120 140 100, — A
120
80
100f
80 60
0 40
40
20 20
o
0 o= =6 -7 -2
(b (¢c) k=18, a=1.3
14 12
120 —— 10
100) 80
80|
60
60 o
40)
40
2 20
o
00 =9 =8 =7 =6 =5 -4 -3 =2 S =8 =6 -4 -2

d) k=9, a=13 (e)k=15 a=199 () k=10, a =13

Figure : Inexact secant (top) and Newton (bottom) for

fi(r) = (7 = 1)2 = 10 (first two columns) and fo(7) = 72 (last column).
Below each panel, « is the oracle accuracy, and k is the number of
iterations needed to converge, i.e., to reach fi(13) < e= 1072

17/33



When is the Level Set Framework Viable

Problem class: Solve

min - ¢(z)

st. p(Adz—b) <o
Strategy: Consider the “flipped” problem
v(7):=min p(Az —b)

zEX
st. o(z) <7

Then opt-val(P(c)) is the minimal root of the equation

v(r) =0

Lower bounding slopes:  0-®(y, 1)
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Conjugate Functions and Duality

Convex Indicator
For any convex set C, the convex indicator function for C' is

0, ze C,
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Conjugate Functions and Duality

Convex Indicator
For any convex set C, the convex indicator function for C' is

5($|C)::{0, zeC,

+oo, z¢ C.
Support Functionals
For any set C, the support functional for C is

0" (x| C):==sup(z,z) .
z€C
Gauges
For any convex set C, the convex gauge function for C' is

y(z |C):=inf{t >0 |z € tC}
1°(210) = sup {(z,2) [y (2 | C) <1}

Fact If 0 € C, then vy (z | C') = §* (z | C°), where
C°:={z|(z,2) <1VzeC}.
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Gauge Optimization

Problem Py Q- 9-®(y,7)
gauge min  (x) min  p(Az —b) —¢*(4%y)
optimization ¢ p(Az —b) <o 5.t plz) <7
BPDN min  [|z] min || Az — b||2 ~14%yllo

s.gic. |Az — blla < o s.gfc. zlly <7
sharp min  afefy + Blall; min |4z — b ~YaBoo-+082 (A7)
elast-net st. ||JAz—b|2 <o st alz|i +8z): <7
matrix min || X||. min || AX — b2 —o1(A™y)
completion Sﬁ. |AX — bl <o 5.t X« <7

Nonsmooth regularized data-fitting.
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Piecewise Linear-Quadratic Penalties

o(x) := sup [(z, u) — %UTBU]
uc U

U C R™ is nonempty, closed and convex with 0 € U (not nec. poly.)
B € R™" is symmetric positive semi-definite.
Examples:

1. Support functionals: B =0

2. Gauge functionals: v (- | U°) =¢6*(- | U)

3. Norms: B = closed unit ball, ||-|| =~ (- |B)

4. Least-squares: U =R", B=1

5. Huber: U = [—¢€,¢]", B=1
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PLQ Densities: Gauss, Laplace, Huber, Vapnik

— V(@) =z

Gauss 0y
w
"
.
N
A N
N
N
i X p .
— — — V(&)= —Ke— K% 2 < -K —— = V@)=—r—¢ r<—€
— V(@) =t% -K<2<K V(iz)=0;, —e<az<e
V(z) =Kz —31K% K<a Vig)=x—¢ e<u

Huber
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0. ®(y, 1) for PLQ Penalties ¢

() := sup [(z, u) — %UTBU]
ucU

Ps min ¢(z) st p(b— Az) <o

9 minp(b— Az) st ¢(z) <7

— max {fy (ATy | U) , \/M/@} € 0;P(y, 1)
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Sparse and Robust Formulation

Signal Recovery

HBP,: min |jz]|; st p(b— Az) <o | Huber J .“ I [ ]
LRAIRIIN
Problem Specification I I
Trath T T
xz  20-sparse spike train in R®? 7
b measurements in R20 LS
A Measurement matrix satisfying RIP
p  Huber function Residuals
o error level set at .01
5 outliers LS
Results
In the presence of outliers, the robust Truth _JLV/\
formulation recovers the spike train, v V
while the standard formulation does not. ﬂ
Huber ) y
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Sparse and Robust Formulation

Signal Recovery

HBP,: Igl<in llzll, st p(b—Az) <o
<z
LS MLLHMM

Problem Specification

z  20-sparse spike train in R Truth l H l l I l“ ’ I
b measurements in R0
A Measurement matrix satisfying RIP Huber
p  Huber function ] H | || M ’ I
o error level set at .01 0 W m e  ww
5 outliers Residuals

Results Lo

In the presence of outliers, the robust

formulation recovers the spike train, Truth —V A T A

while the standard formulation does not.

Huber “




Sensor Network Localization (SNL)

0.5

0.4r

0.3F

021

0.1

-0.5
-0.8

0.6

Given a weighted graph G = (V, E, d) find a realization:
pl,...,pn€R2 with dz’j: ||pz'_pj||2 for all 4j € E.
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Sensor Network Localization (SNL)

SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):

max tr(X)
st. |[PeK(X)—d|3 <o
Xe=0, X>=0

where [’C(X)]zﬂ = X;+ ij — QXZJ
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Sensor Network Localization (SNL)

SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):
max tr(X)
st. |[PeK(X)—d|3 <o
Xe=0, X>=0
where [IC(X)];; = Xiu + Xj — 2X5;.

1 n
Intuition: X = PPT and then tr(X) = 1 Z lpi — pjlI?
with p; the ith row of P. n+
Flipped problem:

i,j=1

min [ Pk(X) - dI3
st. tr X =171
Xe=0 X *>0.
e Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.
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Approximate Newton

Pareto curve

Figure : 0 =0.25

28/33



Approximate Newton

Pareto curve Pareto curve

Figure : 0 =0.25 Figure: 0 =0

28/33



Max-trace

Refine positions

Newton_max

0.5

-0.5

0.5

-0.5
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Max-trace
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Newton_max
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¥+ « ¥
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x¥ 4t
++ *—
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Newton_min
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Refine positions
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Observations

e Simple strategy for optimizing over complex domains

e Rigorous convergence guarantees

e Insensitivity to ill-conditioning

e Many applications

Sensor Network Localization
(Drusvyatskiy-Krislock- Voronin-Wolkowicz '15)
Sparse/Robust Estimation and Kalman Smoothing
(Aravkin-B-Pillonetto ’13)

e Large scale SDP and LP (cf. Renegar ’14)
e Chromosome reconstruction

(Aravkin-Becker-Drusvyatskiy-Lozano ’15)

Phase retrieval (Aravkin-B-Drusvyatskiy-Friedlander-Roy
'16)

Generalized linear models
(Aravkin-B-Drusvyatskiy-Friedlander-Roy ’16)
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Thank you!



Thank you!

Andy



Thank you!

Andy and Barbara
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General Level Set Theorem

; : X CR®™ = R, i=1,2, arbitrary functions and X an
arbitrary set.

epi (¥) := { (,p) } P(z) < o

v(o) == inf ¥1(z) +5((z,0) |epi(¥2)) Pr2(0)
v () = inf a(z) + 0 ((z,7) |epi(¥1)) P2a(T)

Si2:={0c€R}D#argminPis(0) C{z € X }ips(z) =0
Then, for every o € Sy 9,
(a) v(vi(0)) =0, and
(b) argminP; 2(c) = argmin Py 1(v1(0)) C
{2€ X} n(z) = (o)
Moreover, So1 = { vi(0) } o € S12 and

{(o,n(0))}o €812 = {(va(r),7)}7 € Sa1.
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