Matrix Support Functional and its Applications

James V Burke
Mathematics, University of Washington
Joint work with
Yuan Gao (UW) and Tim Hoheisel (McGill),

CORS, Banff 2016
June 1, 2016

Connections

What do the following topics have in common?

- Quadratic Optimization Problem with Equality Constraints
- The Matrix Fractional Function and its Generalization
- Ky Fan p-k Norms
- K-means Clustering
- Best Affine Unbiased Estimator
- Supervised Representation Learning
- Multi-task Learning
- Variational Gram Functions

Connections

What do the following topics have in common?

- Quadratic Optimization Problem with Equality Constraints
- The Matrix Fractional Function and its Generalization
- Ky Fan p-k Norms
- K-means Clustering
- Best Affine Unbiased Estimator
- Supervised Representation Learning
- Multi-task Learning
- Variational Gram Functions

Answer: They can all be represented using a matrix support function that is smooth on the interior of its domain.

A Matrix Support Functional (B-Hoheisel (2015))

Given $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{p \times m}$ set

$$
\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{T}\right) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\}
$$

A Matrix Support Functional (B-Hoheisel (2015))

Given $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{p \times m}$ set
$\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{T}\right) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\}$

We consider the support functional for $\mathcal{D}(A, B)$.

$$
\sigma((X, V) \mid \mathcal{D}(A, B))=\sup _{A Y=B}\left\langle(X, V),\left(Y,-\frac{1}{2} Y Y^{\top}\right)\right\rangle
$$

A Matrix Support Functional (B-Hoheisel (2015))

Given $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{p \times m}$ set

$$
\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{T}\right) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\}
$$

We consider the support functional for $\mathcal{D}(A, B)$.

$$
\begin{aligned}
\sigma((X, V) \mid \mathcal{D}(A, B)) & =\sup _{A Y=B}\left\langle(X, V),\left(Y,-\frac{1}{2} Y Y^{T}\right)\right\rangle \\
& =-\inf _{A Y=B} \frac{1}{2} \operatorname{tr}\left(Y^{T} V Y\right)-\langle X, Y\rangle
\end{aligned}
$$

Support Functions

$$
\sigma_{S}(x):=\sigma(x \mid S):=\sup _{y \in S}\langle x, y\rangle
$$

Support Functions

$$
\sigma_{S}(x):=\sigma(x \mid S):=\sup _{y \in S}\langle x, y\rangle
$$

$S=\bigcap_{x}\{y \mid\langle x, y\rangle \leq \sigma(x \mid S)\}$

Support Functions

$$
\sigma_{S}(x):=\sigma(x \mid S):=\sup _{y \in S}\langle x, y\rangle
$$

$S=\bigcap_{x}\{y \mid\langle x, y\rangle \leq \sigma(x \mid S)\}$

$$
\sigma_{S}=\sigma_{\mathrm{cl} S}=\sigma_{\mathrm{conv}} S=\sigma_{\overline{\mathrm{conv}} S}
$$

Support Functions

$$
\sigma_{S}(x):=\sigma(x \mid S):=\sup _{y \in S}\langle x, y\rangle
$$

$$
S=\bigcap_{x}\{y \mid\langle x, y\rangle \leq \sigma(x \mid S)\}
$$

$$
\sigma_{S}=\sigma_{\mathrm{cl} S}=\sigma_{\text {conv }} S=\sigma_{\overline{\text { conv }}} S
$$

When S is a closed convex set, then

$$
\partial \sigma_{S}(x)=\underset{y \in S}{\arg \max }\langle x, y\rangle
$$

Epigraph

A Representation for $\sigma((X, V) \mid \mathcal{D}(A, B))$

Let $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{p \times m}$ such that $\operatorname{rge} B \subset \operatorname{rge} A$. Then
$\sigma((X, V) \mid \mathcal{D}(A, B))= \begin{cases}\frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{T} M(V)^{\dagger}\binom{X}{B}\right) & \text { if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), V \succeq_{\operatorname{ker} A} 0, \\ +\infty & \text { else. }\end{cases}$
where

$$
M(V):=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right) .
$$

A Representation for $\sigma((X, V) \mid \mathcal{D}(A, B))$

Let $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{p \times m}$ such that $\operatorname{rge} B \subset \operatorname{rge} A$. Then
$\sigma((X, V) \mid \mathcal{D}(A, B))= \begin{cases}\frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{T} M(V)^{\dagger}\binom{X}{B}\right) & \text { if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), V \succeq_{\text {ker } A} 0, \\ +\infty & \text { else. }\end{cases}$
where

$$
M(V):=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right) .
$$

In particular,
$\operatorname{dom} \sigma(\cdot \mid D(A, B))=\operatorname{dom} \partial \sigma(\cdot \mid D(A, B))$

$$
=\left\{(X, V) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \left\lvert\, \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V)\right., V \succeq_{\operatorname{ker} A} 0\right\},
$$

with $\operatorname{int}(\operatorname{dom} \sigma(\cdot \mid D(A, B)))=\left\{(X, V) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \mid V \succ_{\text {ker } A} 0\right\}$.

A Representation for $\sigma((X, V) \mid \mathcal{D}(A, B))$

Let $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{p \times m}$ such that $\operatorname{rge} B \subset \operatorname{rge} A$. Then
$\sigma((X, V) \mid \mathcal{D}(A, B))= \begin{cases}\frac{1}{2} \operatorname{tr}\left(\binom{X}{B}^{T} M(V)^{\dagger}\binom{X}{B}\right) & \text { if } \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V), V \succeq_{\text {ker } A} 0, \\ +\infty & \text { else. }\end{cases}$
where

$$
M(V):=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right) .
$$

In particular,
$\operatorname{dom} \sigma(\cdot \mid D(A, B))=\operatorname{dom} \partial \sigma(\cdot \mid D(A, B))$

$$
=\left\{(X, V) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \left\lvert\, \operatorname{rge}\binom{X}{B} \subset \operatorname{rge} M(V)\right., V \succeq_{\operatorname{ker} A} 0\right\},
$$

with $\operatorname{int}(\operatorname{dom} \sigma(\cdot \mid D(A, B)))=\left\{(X, V) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \mid V \succ_{\text {ker } A} 0\right\}$.
The inverse $M(V)^{-1}$ exists when $V \succ_{\operatorname{ker} A} 0$ and A is surjective.

Relationship to Equality Constrained QP

Consider a equality constrained QP:

$$
\nu(x, V):=\inf _{u \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} u^{T} V u-x^{T} u \right\rvert\, A u=b\right\}
$$

Relationship to Equality Constrained QP

Consider a equality constrained QP:

$$
\nu(x, V):=\inf _{u \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} u^{T} V u-x^{T} u \right\rvert\, A u=b\right\} .
$$

The Lagrangian is $L(u, \lambda)=\frac{1}{2} u^{T} V u-x^{T} u+\lambda^{T}(A u-b)$.
Optimality conditions are

$$
\begin{array}{ll}
V u+A^{T} \lambda-x & =0 \\
A u & =b
\end{array}
$$

Relationship to Equality Constrained QP

Consider a equality constrained QP:

$$
\nu(x, V):=\inf _{u \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} u^{T} V u-x^{T} u \right\rvert\, A u=b\right\}
$$

The Lagrangian is $L(u, \lambda)=\frac{1}{2} u^{T} V u-x^{T} u+\lambda^{T}(A u-b)$.
Optimality conditions are

$$
\begin{array}{ll}
V u+A^{T} \lambda-x & =0 \\
A u & =b
\end{array}
$$

This is equivalent to

$$
\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right)\binom{u}{\lambda}=\binom{x}{b}
$$

Relationship to Equality Constrained QP

Consider a equality constrained QP:

$$
\nu(x, V):=\inf _{u \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} u^{T} V u-x^{T} u \right\rvert\, A u=b\right\}
$$

The Lagrangian is $L(u, \lambda)=\frac{1}{2} u^{T} V u-x^{T} u+\lambda^{T}(A u-b)$.
Optimality conditions are

$$
\begin{array}{ll}
V u+A^{T} \lambda-x & =0 \\
A u & =b
\end{array}
$$

This is equivalent to

$$
M(V)=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right)\binom{u}{\lambda}=\binom{x}{b} .
$$

Relationship to Equality Constrained QP

Consider a equality constrained QP:

$$
\nu(x, V):=\inf _{u \in \mathbb{R}^{n}}\left\{\left.\frac{1}{2} u^{T} V u-x^{T} u \right\rvert\, A u=b\right\}
$$

The Lagrangian is $L(u, \lambda)=\frac{1}{2} u^{T} V u-x^{T} u+\lambda^{T}(A u-b)$.
Optimality conditions are

$$
\begin{array}{ll}
V u+A^{T} \lambda-x & =0 \\
A u & =b
\end{array}
$$

This is equivalent to

$$
M(V)=\left(\begin{array}{cc}
V & A^{T} \\
A & 0
\end{array}\right)\binom{u}{\lambda}=\binom{x}{b} .
$$

Hence

$$
\nu(x, V)=-\sigma((x, V) \mid \mathcal{D}(A, b))
$$

Maximum Likelihood Estimation

$$
L(\mu, \Sigma ; Y):=(2 \pi)^{-m N / 2}|\Sigma|^{-N / 2} \prod_{i=1}^{N} \exp \left(\left(y_{i}-\mu\right)^{T} \Sigma^{-1}\left(y_{i}-\mu\right)\right)
$$

Up to a constant, the negative log-likelihood is

$$
\begin{aligned}
-\ln L(\mu, \Sigma ; Y) & =\frac{1}{2} \ln \operatorname{det} \Sigma+\frac{1}{2} \operatorname{tr}\left((Y-M)^{T} \Sigma^{-1}(Y-M)\right) \\
& =\sigma((Y-M), \Sigma) \mid \mathcal{D}(0,0))-\frac{1}{2}(-\ln \operatorname{det} \Sigma) .
\end{aligned}
$$

Maximum Likelihood Estimation

$$
L(\mu, \Sigma ; Y):=(2 \pi)^{-m N / 2}|\Sigma|^{-N / 2} \prod_{i=1}^{N} \exp \left(\left(y_{i}-\mu\right)^{T} \Sigma^{-1}\left(y_{i}-\mu\right)\right)
$$

Up to a constant, the negative log-likelihood is

$$
\begin{aligned}
-\ln L(\mu, \Sigma ; Y) & =\frac{1}{2} \ln \operatorname{det} \Sigma+\frac{1}{2} \operatorname{tr}\left((Y-M)^{T} \Sigma^{-1}(Y-M)\right) \\
& =\sigma((Y-M), \Sigma) \mid \mathcal{D}(0,0))-\frac{1}{2}(-\ln \operatorname{det} \Sigma) .
\end{aligned}
$$

The Matrix Fractional Function:Take $A=0$ and $B=0$, and set

$$
\begin{aligned}
\gamma(X, V) & :=\sigma((x, V) \mid \mathcal{D}(0,0)) \\
& = \begin{cases}\frac{1}{2} X^{\top} V^{\dagger} X & \text { if rge } X \subset \operatorname{rge} V, V \succeq 0, \\
+\infty & \text { else. }\end{cases}
\end{aligned}
$$

Recall $\quad \partial \sigma_{C}(x)=\left\{y \in \overline{\operatorname{conv}} C \mid\langle x, y\rangle=\sigma_{C}(x)\right\}$.

$\overline{\operatorname{conv}} \mathcal{D}(A, B)$

Recall $\quad \partial \sigma_{C}(x)=\left\{y \in \overline{\text { conv }} C \mid\langle x, y\rangle=\sigma_{C}(x)\right\}$.
For $\partial \sigma((X, V) \mid \mathcal{D}(A, B))$ we need $\overline{\operatorname{conv}}(\mathcal{D}(A, B))$.

$\overline{\operatorname{conv}} \mathcal{D}(A, B)$

Recall $\quad \partial \sigma_{C}(x)=\left\{y \in \overline{\text { conv }} C \mid\langle x, y\rangle=\sigma_{C}(x)\right\}$.
For $\partial \sigma((X, V) \mid \mathcal{D}(A, B))$ we need $\overline{\operatorname{conv}}(\mathcal{D}(A, B))$.
Set
$\mathbb{S}_{+}^{n}(\operatorname{ker} A):=\left\{W \in \mathbb{S}^{n} \mid u^{T} W u \geq 0 \forall u \in \operatorname{ker} A\right\}=\left\{W \succeq_{\operatorname{ker} A} 0\right\}$.
Then $\mathbb{S}_{+}^{n}(\operatorname{ker} A)$ is a closed convex cone whose polar is given by

$$
\mathbb{S}_{+}^{n}(\operatorname{ker} A)^{\circ}=\left\{W \in \mathbb{S}^{n} \mid W=P W P \preceq 0\right\}
$$

where P is the orthogonal projection onto ker A.

$\overline{\operatorname{conv}} \mathcal{D}(A, B)$

Recall $\quad \partial \sigma_{C}(x)=\left\{y \in \overline{\text { conv }} C \mid\langle x, y\rangle=\sigma_{C}(x)\right\}$.
For $\partial \sigma((X, V) \mid \mathcal{D}(A, B))$ we need $\overline{\operatorname{conv}}(\mathcal{D}(A, B))$.
Set

$$
\mathbb{S}_{+}^{n}(\operatorname{ker} A):=\left\{W \in \mathbb{S}^{n} \mid u^{T} W u \geq 0 \forall u \in \operatorname{ker} A\right\}=\left\{W \succeq_{\operatorname{ker} A} 0\right\}
$$

Then $\mathbb{S}_{+}^{n}(\operatorname{ker} A)$ is a closed convex cone whose polar is given by

$$
\mathbb{S}_{+}^{n}(\operatorname{ker} A)^{\circ}=\left\{W \in \mathbb{S}^{n} \mid W=P W P \preceq 0\right\}
$$

where P is the orthogonal projection onto ker A.
For $\mathcal{D}(A, B):=\left\{\left.\left(Y,-\frac{1}{2} Y Y^{T}\right) \in \mathbb{R}^{n \times m} \times \mathbb{S}^{n} \right\rvert\, Y \in \mathbb{R}^{n \times m}: A Y=B\right\}$,

$$
\overline{\operatorname{conv}} \mathcal{D}(A, B)=\Omega(A, B)
$$

$:=\left\{(Y, W) \in \mathbb{R}^{n \times m} \times \mathbb{S}_{-}^{n} \mid A Y=B\right.$ and $\left.\frac{1}{2} Y Y^{T}+W \in \mathbb{S}_{+}^{n}(\operatorname{ker} A)^{\circ}\right\}$.

Applications

- Quadratic Optimization Problem with Equality Constraints
- The Matrix Fractional Function and its Generalization
- Ky Fan p-k Norms
- K-means Clustering
- Best Affine Unbiased Estimator
- Supervised Representation Learning
- Multi-task Learning
- Variational Gram Functions
- ...

Motivating Examples

Recall the matrix fractional function

$$
\begin{aligned}
\gamma(X, V) & :=\sigma((X, V) \mid \mathcal{D}(0,0)) \\
& =\left\{\begin{array}{rc}
\frac{1}{2} \operatorname{tr}\left(X^{\top} V^{\dagger} X\right) & \text { if } \quad \text { rge } X \in \operatorname{rge} V, V \succeq 0, \\
+\infty & \text { else. }
\end{array}\right.
\end{aligned}
$$

Motivating Examples

Recall the matrix fractional function

$$
\begin{aligned}
\gamma(X, V) & :=\sigma((X, V) \mid \mathcal{D}(0,0)) \\
& =\left\{\begin{array}{rc}
\frac{1}{2} \operatorname{tr}\left(X^{T} V^{\dagger} X\right) & \text { if } \quad \text { rge } X \in \operatorname{rge} V, V \succeq 0, \\
+\infty & \text { else. }
\end{array}\right.
\end{aligned}
$$

We have the following two representations of the nuclear norm:

$$
\begin{aligned}
\|X\|_{*} & =\min _{V} \gamma(X, V)+\frac{1}{2} \operatorname{tr} V \\
\frac{1}{2}\|X\|_{*}^{2} & =\min _{V} \gamma(X, V)+\delta(V \mid \operatorname{tr}(V) \leq 1)
\end{aligned}
$$

Infimal Projections

For a closed proper convex function h, define the infimal projection:

$$
\varphi(X):=\inf _{V} \sigma((X, V) \mid \mathcal{D}(A, B))+h(V)
$$

Infimal Projections

For a closed proper convex function h, define the infimal projection:

$$
\varphi(X):=\inf _{V} \sigma((X, V) \mid \mathcal{D}(A, B))+h(V) .
$$

Theorem
If dom $h \cap \mathbb{S}_{++}^{n}(\operatorname{ker} A) \neq \emptyset$, then

$$
\varphi^{*}(Y)=\inf \left\{h^{*}(-W) \mid(Y, W) \in \overline{\operatorname{conv}} \mathcal{D}(A, B)\right\}
$$

Infimal Projections with Indicators

When h is an indicator of a closed convex set \mathcal{V},

$$
\varphi_{\mathcal{V}}(X):=\inf _{V \in \mathcal{V}} \sigma((X, V) \mid \mathcal{D}(A, B))
$$

then

$$
\begin{aligned}
\varphi_{\mathcal{V}}^{*}(Y) & =\frac{1}{2} \sigma\left(Y Y^{T} \mid\left\{V \in \mathcal{V} \mid V \succeq_{\operatorname{ker} A} 0\right\}\right)+\delta(Y \mid A Y=B) \\
& =\frac{1}{2} \sigma\left(Y Y^{T} \mid \mathcal{V} \cap \mathbb{S}_{+}^{n}(\operatorname{ker} A)\right)+\delta(Y \mid A Y=B)
\end{aligned}
$$

Infimal Projections with Indicators

When h is an indicator of a closed convex set \mathcal{V},

$$
\varphi_{\mathcal{V}}(X):=\inf _{V \in \mathcal{V}} \sigma((X, V) \mid \mathcal{D}(A, B))
$$

then

$$
\begin{aligned}
\varphi_{\mathcal{V}}^{*}(Y) & =\frac{1}{2} \sigma\left(Y Y^{T} \mid\left\{V \in \mathcal{V} \mid V \succeq_{\operatorname{ker} A} 0\right\}\right)+\delta(Y \mid A Y=B) \\
& =\frac{1}{2} \sigma\left(Y Y^{T} \mid \mathcal{V} \cap \mathbb{S}_{+}^{n}(\operatorname{ker} A)\right)+\delta(Y \mid A Y=B)
\end{aligned}
$$

Note that when $B=0$, both $\varphi_{\mathcal{V}}$ and $\varphi_{\mathcal{V}}^{*}$ are positively homogeneous of degree 2.
When $A=0$ and $B=0, \varphi_{\mathcal{V}}^{*}$ is called a variational Gram functionin Jalali-Xiao-Fazel (2016?).

Ky Fan (p,k) norm

For $p \geq 1,1 \leq k \leq \min \{m, n\}$, the Ky Fan (p, k)-norm of a matrix $X \in \mathbb{R}^{n \times m}$ is given by

$$
\|X\|_{p, k}=\left(\sum_{i=1}^{k} \sigma_{i}^{p}\right)^{1 / p}
$$

where σ_{i} are the singular values of X sorted in nonincreasing order.

Ky Fan (p,k) norm

For $p \geq 1,1 \leq k \leq \min \{m, n\}$, the Ky Fan (p, k)-norm of a matrix $X \in \mathbb{R}^{n \times m}$ is given by

$$
\|X\|_{p, k}=\left(\sum_{i=1}^{k} \sigma_{i}^{p}\right)^{1 / p}
$$

where σ_{i} are the singular values of X sorted in nonincreasing order.

- The Ky Fan $(p, \min \{m, n\})$-norm is the Schatten-p norm.
- The Ky Fan $(1, k)$-norm is the standard Ky Fan k-norm.

Ky Fan (p, k) norm

For $p \geq 1,1 \leq k \leq \min \{m, n\}$, the $K y$ Fan (p, k)-norm of a matrix $X \in \mathbb{R}^{n \times m}$ is given by

$$
\|X\|_{p, k}=\left(\sum_{i=1}^{k} \sigma_{i}^{p}\right)^{1 / p}
$$

where σ_{i} are the singular values of X sorted in nonincreasing order.

- The Ky Fan $(p, \min \{m, n\})$-norm is the Schatten-p norm.
- The Ky Fan $(1, k)$-norm is the standard Ky Fan k-norm.

Corollary

$$
\frac{1}{2}\|X\|_{\frac{2 p}{\rho+1}, \min \{m, n\}}^{2}=\inf _{\|V\|_{p, \min \{m, n\}} \leq 1} \gamma(X, V)
$$

Ky Fan (p,k) norm

Corollary

$$
\begin{gathered}
\frac{1}{2}\|X\|_{\frac{2 p}{p+1}, \min \{m, n\}}^{2}=\inf _{\|V\|_{p, \min \{m, n\}} \leq 1} \gamma(X, V) . \\
\gamma(X, V)=\sigma((X, V) \mid \mathcal{D}(0,0)), \quad \varphi_{\mathcal{V}}(X):=\inf _{V \in \mathcal{V}} \sigma((X, V) \mid \mathcal{D}(A, B)) \\
\text { and } \quad \gamma \mathcal{V}(X):=\inf _{V \in \mathcal{V}} \sigma((X, V) \mid \mathcal{D}(0,0))
\end{gathered}
$$

Proof.

$$
\begin{aligned}
\left(\inf _{\|V\|_{p, \min \{m, n\}} \leq 1} \gamma(X, V)\right)^{*} & =\sigma\left(\left.\frac{1}{2} X X^{T} \right\rvert\,\left\{V \succeq 0 \mid\|V\|_{p, \min \{m, n\}} \leq 1\right\}\right) \\
& =\frac{1}{2}\left\|X X^{T}\right\|_{\frac{p}{p-1}, \min \{m, n\}}=\frac{1}{2}\|X\|_{\frac{2 p}{p+1}, \min \{m, n\}}^{2}
\end{aligned}
$$

Ky Fan (p,k) norm

As a special case when $p=1$,
Corollary

$$
\frac{1}{2}\|X\|_{*}^{2}=\min _{\operatorname{tr}} V \leq 1 \gamma(X, V) .
$$

Lemma

Let \mathcal{V} to be the set of rank-k orthogonal projection matrices

$$
\mathcal{V}=\left\{U U^{T} \mid U \in \mathbb{R}^{n \times k}, U^{T} U=I_{k}\right\}, \text { then } \frac{1}{2}\|X\|_{2, k}^{2}=\sigma_{\mathcal{V}}\left(\frac{1}{2} X X^{T}\right)
$$

Proof.
A consequence of the following fact [Fillmore-Williams 1971]:

$$
\operatorname{conv}\left\{U U^{T} \mid U \in \mathbb{R}^{n \times k}, U^{T} U=I_{k}\right\}=\left\{V \in \mathbb{S}^{n} \mid I \succeq V \succeq 0, \operatorname{tr} V=k\right\}
$$

K-means Clustering [Zha-He-Ding-Gu-Simon 2001]

Consider $X \in \mathbb{R}^{n \times m}$, the k-means objective is

$$
K(X):=\min _{C, E} \frac{1}{2}\|X-E C\|_{2}^{2}
$$

where $C \in \mathbb{R}^{k \times m}$ represents the k centers, and E is a $n \times k$ matrix where each row is one of $e_{1}^{T}, \ldots, e_{k}^{T}$ which correspond to the k cluster assignments.

The optimal C is given by $C=\left(E^{T} E\right)^{-1} E^{\top} X$.
Define $P_{E}=E\left(E^{T} E\right)^{-1} E^{T}$, then P_{E} is an orthogonal projection.

$$
\begin{aligned}
K(X) & =\min _{E} \frac{1}{2}\left\|\left(I-P_{E}\right) X\right\|_{2}^{2}=\frac{1}{2} \min _{E} \operatorname{tr}\left(\left(I-P_{E}\right) X X^{T}\right) \\
& =\frac{1}{2}\|X\|_{2}^{2}-\sigma_{\mathcal{P}_{k}}\left(\frac{1}{2} X X^{T}\right) \geq \frac{1}{2}\left(\|X\|_{2}^{2}-\|X\|_{2, k}^{2}\right)
\end{aligned}
$$

Best Affine Unbiased Estimator

For a linear regression model $y=A^{T} \beta+\epsilon$ where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2} V\right)$, and a given matrix B, an affine unbiased estimator of $B^{T} \beta$ is an estimator of the form $\hat{\theta}=X^{T} y+c$ satisfying $\mathrm{E} \hat{\theta}=B^{T} \beta$.

$$
\text { Best: } \operatorname{Var}\left(\hat{\theta}^{*}\right) \preceq \operatorname{Var}(\hat{\theta}), \forall \hat{\theta}
$$

Best Affine Unbiased Estimator

For a linear regression model $y=A^{T} \beta+\epsilon$ where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2} V\right)$, and a given matrix B, an affine unbiased estimator of $B^{T} \beta$ is an estimator of the form $\hat{\theta}=X^{T} y+c$ satisfying $\mathrm{E} \hat{\theta}=B^{T} \beta$.

$$
\text { Best: } \operatorname{Var}\left(\hat{\theta}^{*}\right) \preceq \operatorname{Var}(\hat{\theta}), \forall \hat{\theta}
$$

If a solution to

$$
v(A, B, V):=\min _{X: A X=B} \frac{1}{2} \operatorname{tr} X^{\top} V^{\dagger} X
$$

exists and unique, then $\hat{\theta}^{*}=\left(X^{*}\right)^{T} y$.

$$
v(A, B, V)=-\sigma_{\mathcal{D}(A, B)}(0, V)
$$

The optimal solution X^{*} satisfies

$$
M(V)\binom{X^{*}}{W}=\binom{0}{B}
$$

Supervised Representation Learning

Consider a binary classification problem where we are given the training data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{m} \times\{-1,1\}$, and test data: $x_{n+1}, \ldots, x_{n+t} \in \mathbb{R}^{m}$.

Representation learning aims to learn a feature mapping $\Phi: \mathbb{R}^{m} \rightarrow \mathcal{H}$ that maps the data points to a feature space where points between the two classes are well separated.

Kernel Methods: Instead of specifying the function Φ explicitly, kernel methods consider mapping the data points to a reproducing kernel Hilbert space \mathcal{H} so that the kernel matrix $K \in \mathbb{S}_{+}^{n+t}$, where $K_{i j}=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$, implicitly determines the mapping Φ.

Supervised Representation Learning

Let $\mathcal{K} \subset \mathbb{S}_{+}^{n+t}$ be a set of candidate kernels. The best $K \in \mathcal{K}$ can be selected by maximizing its alignment with the kernel specified by the training labels:

$$
\varphi_{\mathcal{V}}^{*}(y)=\max _{K \in \mathcal{V}} \frac{1}{2}\left\langle K_{1: n, 1: n}, y y^{T}\right\rangle
$$

where

$$
\mathcal{V}=\mathcal{K} \cap \mathbb{B}_{2} \cap \mathbb{S}_{+}^{n}, \quad A=\left[\begin{array}{cc}
0_{n \times n} & 0 \\
0 & I_{t \times t}
\end{array}\right], \quad \text { and } B=0_{(n+t) \times 1}
$$

Multi-task Learning

In multi-task learning, T sets of labelled training data $\left(x_{t 1}, y_{t 1}\right), \ldots,\left(x_{t n}, y_{t n}\right) \in \mathbb{R}^{m} \times \mathbb{R}$ are given, representing T learning tasks.
Assumption: A linear feature map $h_{i}(x)=\left\langle u_{i}, x\right\rangle, i=1, \ldots, m$, where $U=\left(u_{1}, \ldots, u_{m}\right)$ is an $m \times m$ orthogonal matrix, and the predictor for each task is $f_{t}(x):=\left\langle a_{t}, h(x)\right\rangle$.
The multi-task learning problem is then

$$
\min _{A, U} \sum_{t=1}^{T} \sum_{i=1}^{m} L_{t}\left(y_{t i},\left\langle a_{t}, U^{T} x_{t i}\right\rangle\right)+\mu\|A\|_{2,1}^{2},
$$

where $A=\left(a_{1}, \ldots, a_{T}\right),\|A\|_{2,1}^{2}$ is the square of the sum of the 2 -norm of the rows of A, and L_{t} is a loss function for each task. Denote $W=U A$, then the nonconvex problem is equivalent to the following convex problem [Argyriou-Evgeniou-Pontil 2006]:

$$
\min _{W, D} \sum_{t=1}^{T} \sum_{i=1}^{m} L\left(y_{t i},\left\langle w_{t}, x_{t i}\right\rangle\right)+2 \mu \gamma(W, D) \quad \text { s.t. } \quad \operatorname{tr} D \leq 1
$$

It is equivalent to

$$
\min _{W} \sum_{t=1}^{T} \sum_{i=1}^{m} L\left(y_{t i},\left\langle w_{t}, x_{t i}\right\rangle\right)+\mu\|W\|_{*}^{2}
$$

Thank you!

References I

J. V. Burke and T. Hoheisel: Matrix Support Functionals for Inverse Problems, Regularization, and Learning. SIAM Journal on Optimization, 25(2):1135-1159, 2015.

