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Connections

What do the following topics have in common?

I Quadratic Optimization Problem with Equality Constraints

I The Matrix Fractional Function and its Generalization

I Ky Fan p-k Norms

I K-means Clustering

I Best Affine Unbiased Estimator

I Supervised Representation Learning

I Multi-task Learning

I Variational Gram Functions

Answer: They can all be represented using a matrix support
function that is smooth on the interior of its domain.
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A Matrix Support Functional (B-Hoheisel (2015))

Given A ∈ Rp×n and B ∈ Rp×m set

D(A,B) :=
{(

Y ,− 1
2YY

T
)
∈ Rn×m × Sn

∣∣ Y ∈ Rn×m : AY = B
}

We consider the support functional for D(A,B).

σ ((X ,V ) | D(A,B)) = sup
AY=B

〈(X ,V ), (Y ,− 1
2YY

T )〉

= − inf
AY=B

1
2tr (Y TVY )− 〈X , Y 〉
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Support Functions

σS(x) := σ (x | S ) := sup
y∈S
〈x , y〉

When S is a closed convex set, then

∂σS(x) = arg max
y∈S

〈x , y〉 .
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Epigraph

epi f := {(x , µ) | f (x) ≤ µ}

f ∗(y) := σ ((y ,−1) | epi f )



A Representation for σ ((X ,V ) | D(A,B))

Let A ∈ Rp×n and B ∈ Rp×m such that rgeB ⊂ rgeA. Then

σ ((X ,V ) | D(A,B)) =

{
1
2tr
((X

B

)T
M(V )†

(X
B

))
if rge

(X
B

)
⊂ rgeM(V ), V �ker A 0,

+∞ else.

where

M(V ) :=

(
V AT

A 0

)
.

In particular,

domσ (· | D(A,B)) = dom ∂σ (· | D(A,B))

=

{
(X ,V ) ∈ Rn×m × Sn

∣∣∣∣ rge(XB
)
⊂ rgeM(V ), V �ker A 0

}
,

with int (domσ (· | D(A,B))) = {(X ,V ) ∈ Rn×m × Sn | V �ker A 0} .

The inverse M(V )−1 exists when V �ker A 0 and A is surjective.
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Relationship to Equality Constrained QP

Consider a equality constrained QP:

ν(x ,V ) := inf
u∈Rn

{
1
2u

TVu − xTu | Au = b
}
.

The Lagrangian is L(u, λ) = 1
2u

TVu − xTu + λT (Au − b).

Optimality conditions are

Vu + ATλ− x = 0

Au = b

This is equivalent to
M(V ) =

Hence
ν(x ,V ) = −σ ((x ,V ) | D(A, b)) .
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Maximum Likelihood Estimation

L(µ,Σ;Y ) := (2π)−mN/2|Σ|−N/2
N∏
i=1

exp((yi − µ)TΣ−1(yi − µ))

Up to a constant, the negative log-likelihood is

− ln L(µ,Σ;Y ) = 1
2 ln det Σ + 1

2tr
(

(Y −M)TΣ−1(Y −M)
)

= σ ((Y −M),Σ) | D(0, 0))− 1
2 (− ln det Σ).
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The Matrix Fractional Function:Take A = 0 and B = 0, and set

γ(X ,V ) := σ ((x ,V ) | D(0, 0))

=

{
1
2X

TV †X if rgeX ⊂ rgeV ,V � 0,

+∞ else.



convD(A,B)

Recall ∂σC (x) = {y ∈ convC | 〈x , y〉 = σC (x)} .

For ∂σ ((X ,V ) | D(A,B)) we need conv (D(A,B)).

Set

Sn+(kerA) :=
{
W ∈ Sn

∣∣∣ uTWu ≥ 0 ∀ u ∈ kerA
}

= {W �ker A 0}.

Then Sn+(kerA) is a closed convex cone whose polar is given by

Sn+(kerA)◦ = {W ∈ Sn |W = PWP � 0} ,

where P is the orthogonal projection onto kerA.

For D(A,B) :=
{(

Y ,− 1
2YY

T
)
∈ Rn×m × Sn | Y ∈ Rn×m : AY = B

}
,

convD(A,B) = Ω(A,B)

:=
{

(Y ,W ) ∈ Rn×m × Sn−
∣∣∣ AY = B and 1

2YY
T + W ∈ Sn+(kerA)◦

}
.
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Applications

I Quadratic Optimization Problem with Equality Constraints

I The Matrix Fractional Function and its Generalization

I Ky Fan p-k Norms

I K-means Clustering
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I · · ·



Motivating Examples

Recall the matrix fractional function

γ(X ,V ) := σ ((X ,V ) | D(0, 0))

=

{
1
2tr (XTV †X ) if rgeX ∈ rgeV ,V � 0,

+∞ else.

We have the following two representations of the nuclear norm:

‖X‖∗ = min
V
γ(X ,V ) +

1

2
trV

1

2
‖X‖2

∗ = min
V
γ(X ,V ) + δ (V | tr(V ) ≤ 1) ,
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Infimal Projections

For a closed proper convex function h, define the infimal projection:

ϕ(X ) := inf
V
σ ((X ,V ) | D(A,B)) + h(V ).

Theorem
If dom h ∩ Sn++(kerA) 6= ∅, then

ϕ∗(Y ) = inf {h∗(−W ) | (Y ,W ) ∈ convD(A,B)} .
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Infimal Projections with Indicators

When h is an indicator of a closed convex set V,

ϕV(X ) := inf
V∈V

σ ((X ,V ) | D(A,B)) ,

then

ϕ∗V(Y ) = 1
2σ
(
YY T | {V ∈ V | V �ker A 0}

)
+ δ (Y | AY = B )

= 1
2σ
(
YY T

∣∣ V ∩ Sn+(kerA)
)

+ δ (Y | AY = B )

Note that when B = 0, both ϕV and ϕ∗V are positively
homogeneous of degree 2.
When A = 0 and B = 0, ϕ∗V is called a
variational Gram functionin Jalali-Xiao-Fazel (2016?).
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Ky Fan (p,k) norm

For p ≥ 1, 1 ≤ k ≤ min{m, n}, the Ky Fan (p,k)-norm of a matrix
X ∈ Rn×m is given by

‖X‖p,k =

(
k∑

i=1

σpi

)1/p

,

where σi are the singular values of X sorted in nonincreasing order.

I The Ky Fan (p,min{m, n})-norm is the Schatten-p norm.

I The Ky Fan (1, k)-norm is the standard Ky Fan k-norm.

Corollary

1

2
‖X‖2

2p
p+1

,min{m,n} = inf
‖V ‖p,min{m,n}≤1

γ(X ,V ).
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Ky Fan (p,k) norm

Corollary

1

2
‖X‖2

2p
p+1

,min{m,n} = inf
‖V ‖p,min{m,n}≤1

γ(X ,V ).

γ(X ,V ) = σ ((X ,V ) | D(0, 0)) , ϕV(X ) := inf
V∈V

σ ((X ,V ) | D(A,B))

and γV(X ) := inf
V∈V

σ ((X ,V ) | D(0, 0))

Proof.

(
inf

‖V ‖p,min{m,n}≤1
γ(X ,V )

)∗
= σ

(
1
2XX

T
∣∣ {V � 0

∣∣ ‖V ‖p,min{m,n} ≤ 1
})

= 1
2‖XX

T‖ p
p−1

,min{m,n} = 1
2‖X‖

2
2p
p+1

,min{m,n}.



Ky Fan (p,k) norm

As a special case when p = 1,

Corollary

1
2‖X‖2

∗ = mintrV≤1 γ(X ,V ).

Lemma
Let V to be the set of rank-k orthogonal projection matrices

V =
{
UUT

∣∣ U ∈ Rn×k ,UTU = Ik
}
, then 1

2‖X‖2
2,k = σV

(
1
2XX

T
)
.

Proof.
A consequence of the following fact [Fillmore-Williams 1971]:

conv
{
UUT

∣∣ U ∈ Rn×k ,UTU = Ik
}

= {V ∈ Sn | I � V � 0, trV = k } .



K-means Clustering [Zha-He-Ding-Gu-Simon 2001]

Consider X ∈ Rn×m, the k-means objective is

K (X ) := min
C ,E

1
2‖X − EC‖2

2,

where C ∈ Rk×m represents the k centers, and E is a n× k matrix
where each row is one of eT1 , . . . , e

T
k which correspond to the k

cluster assignments.

The optimal C is given by C = (ETE )−1ETX .

Define PE = E (ETE )−1ET , then PE is an orthogonal projection.

K (X ) = min
E

1
2‖(I − PE)X‖2

2 = 1
2 min

E
tr
(

(I − PE)XXT
)

= 1
2‖X‖

2
2 − σPk

(
1
2XX

T
)
≥ 1

2

(
‖X‖2

2 − ‖X‖2
2,k

)
.



Best Affine Unbiased Estimator

For a linear regression model y = ATβ + ε where ε ∼ N (0, σ2V ),
and a given matrix B, an affine unbiased estimator of BTβ is an
estimator of the form θ̂ = XT y + c satisfying Eθ̂ = BTβ.

Best: Var(θ̂∗) � Var(θ̂), ∀θ̂

If a solution to

v(A,B,V ) := min
X :AX=B

1
2trX

TV †X .

exists and unique, then θ̂∗ = (X ∗)T y .

v(A,B,V ) = −σD(A,B)(0,V ).

The optimal solution X ∗ satisfies

M(V )

(
X ∗

W

)
=

(
0

B

)
.



Best Affine Unbiased Estimator

For a linear regression model y = ATβ + ε where ε ∼ N (0, σ2V ),
and a given matrix B, an affine unbiased estimator of BTβ is an
estimator of the form θ̂ = XT y + c satisfying Eθ̂ = BTβ.

Best: Var(θ̂∗) � Var(θ̂), ∀θ̂

If a solution to

v(A,B,V ) := min
X :AX=B

1
2trX

TV †X .

exists and unique, then θ̂∗ = (X ∗)T y .

v(A,B,V ) = −σD(A,B)(0,V ).

The optimal solution X ∗ satisfies

M(V )

(
X ∗

W

)
=

(
0

B

)
.



Supervised Representation Learning

Consider a binary classification problem where we are given the
training data: (x1, y1), . . . , (xn, yn) ∈ Rm × {−1, 1}, and test data:
xn+1, . . . , xn+t ∈ Rm.

Representation learning aims to learn a feature mapping
Φ : Rm → H that maps the data points to a feature space where
points between the two classes are well separated.

Kernel Methods: Instead of specifying the function Φ explicitly,
kernel methods consider mapping the data points to a reproducing
kernel Hilbert space H so that the kernel matrix K ∈ Sn+t

+ , where
Kij = 〈Φ(xi ), Φ(xj)〉, implicitly determines the mapping Φ.



Supervised Representation Learning

Let K ⊂ Sn+t
+ be a set of candidate kernels. The best K ∈ K can

be selected by maximizing its alignment with the kernel specified
by the training labels:

ϕ∗V(y) = max
K∈V

1
2

〈
K1:n,1:n, yy

T
〉
,

where

V = K ∩ B2 ∩ Sn+, A =

[
0n×n 0

0 It×t

]
, and B = 0(n+t)×1.



Multi-task Learning

In multi-task learning, T sets of labelled training data
(xt1, yt1), . . . , (xtn, ytn) ∈ Rm × R are given, representing T
learning tasks.
Assumption: A linear feature map hi (x) = 〈ui , x〉, i = 1, . . . ,m,
where U = (u1, . . . , um) is an m ×m orthogonal matrix, and the
predictor for each task is ft(x) := 〈at , h(x)〉.
The multi-task learning problem is then

minA,U
∑T

t=1

∑m
i=1 Lt

(
yti , 〈at ,UT xti 〉

)
+ µ‖A‖2

2,1,

where A = (a1, . . . , aT ), ‖A‖2
2,1 is the square of the sum of the

2-norm of the rows of A, and Lt is a loss function for each task.
Denote W = UA, then the nonconvex problem is equivalent to the
following convex problem [Argyriou-Evgeniou-Pontil 2006]:

minW ,D
∑T

t=1

∑m
i=1 L (yti , 〈wt , xti 〉) + 2µγ(W ,D) s.t. trD ≤ 1.

It is equivalent to

minW
∑T

t=1

∑m
i=1 L (yti , 〈wt , xti 〉) + µ‖W ‖2

∗.



Thank you !
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