
Northwest Probability Seminar
The Fourth NW Probability Seminar
October 19, 2002
The event in
pictures.
Northwest Probability Seminars are oneday
miniconferences held at the University of Washington
and organized in collaboration with
the Oregon State University, the University of British Columbia,
the University of Oregon, and the Theory Group at the Microsoft
Research. There is no registration fee. Participants
are requested to contact Chris Burdzy
(burdzy@math.washington.edu
) in advance
so that adequate facilities may be arranged for.
The talks will take place in MEB 238 and MEB 242
(Mechanical Engineering Building).
See the map
of northcentral campus. The Mechanical Engineering Building is marked
as MEB in red.
More
campus maps are available at the UW Web site.
Parking on UW campus is free on Saturdays after 12:00 (noon).
More information is available at a
parking Web site
provided by UW.
Tentative schedule
 12:00 Informal lunch in the Mathematics Department Lounge (Padelford Hall)
 1:00 Martin T. Barlow, University of British Columbia

Random walks on supercritical percolation clusters
Consider bond percolation on ${\bf Z}^d$. It is well known that for
$p>p_c$ there exists (except for a set of $\omega$ with probability
zero) a unique infinite cluster $C(\omega)$, which has positive density.
I will discuss the behaviour of simple random walk on $C(\omega)$.
The problem divides into two parts. The first is to use fairly well
known properties of supercritical percolation to obtain volume
growth and Poincare inequalities for `most' balls in $C(\omega)$.
The second is to apply `heat kernel' methods, which have mainly been
developed for very regular graphs, to this situation, where there are
small local irregularities.
 2:00 Scott Sheffield, Theory Group, Microsoft Research

Crystal facets and the amoeba
Why do crystals have facets? Why do the facets always rational slopes? What
causes particular facets in an equilibrium crystal (e.g., certain surfactant
and condensed helium crystals) to disappear and reappear when parameters (e.g., temperature) are changed?
In the real world, these questions are difficult to answer quantitatively. But for a
certain class of "random surface" models (which arise as "height functions" of
random perfect matchings of a weighted, bipartite doubly periodic graph G, embedded in the
plane), we can precisely describe the facets that arise in the "thermodynamic limit"
using an algebraic geometric construction called the "amoeba." We show that the slopes
of these facets always lie in the dual of the lattice of translation symmetries of G; depending on
the edge weights, some, none, or all of these possible facets may be present.
An ergodic Gibbs measure mu on the space of perfect matchings of G is said to be a
rough phase if, when two matchings chosen independently from mu are superimposed,
there are almost surely infinitely many cycles that surround the origin. If the origin
is almost surely contained in only finitely many cycles, then mu is smooth. We will
see that crystal facets correspond to smooth phases. The criteria for the existence of
smooth phases (and hence crystal facets) are surprisingly simple and can be stated in
terms of the perfect matchings of a single period of G. One consequence of our analysis
is that sampling a perfect matching from any rough phase is equivalent to constructing
a spanning tree of a socalled "Tgraph" using Wilson's algorithm and
a zerodrift looperased random walk. The results are joint work with Andrei
Okounkov and Richard Kenyon.
 3:00 Coffee break
 3:30 Hao Wang, University of Oregon

A class of interacting superprocesses
This talk will present some of my recent research progress
and joint work with D. Dawson and Z. Li on a class of interacting
measurevalued diffusion processes which include SuperBrownian motion
as a special case. The talk is intended to cover a class of interacting
branching particle systems with location dependent branching, the state
classification of the limiting superprocesses, singular interacting
branching particle systems, coalescence property, degenerate stochastic
partial differential equation for a purelyatomic measure valued process
and the strong uniqueness of the solution of this degenerated SPDE.
 5:30 No host dinner at Aqua Verde Paddle Club restaurant
(1303 N.E. Boat St., Seattle, WA 98105). See the map.

