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Quote by Arnold Ross

“Think deeply of simple things”
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Symmetric Groups

Notation.
I Sn is the group of permutations.
I ti ,j = (i ↔ j) = transposition for i < j ,
I si = (i ↔ i + 1) = simple transposition for 1 ≤ i < n.

Example. w = [3, 4, 1, 2, 5] ∈ S5,

ws4 = [3, 4, 1, 5, 2] and s4w = [3, 5, 1, 2, 4].



Symmetric Groups

Presentation.
Sn is generated by s1, s2, . . . , sn−1 with relations

si si = 1
(si sj)2 = 1 if |i − j | > 1
(si si+1)3 = 1

This presentation of Sn by generators and relations is encoded an
edge labeled chain, called a Coxeter graph.

S7 ≈ •1 3 •2 3 •3 3 •4 3 •5 3 •6



Symmetric Groups

Notation. Given any w ∈ Sn write

w = si1si2 · · · sik

in a minimal number of generators. Then
I k is the length of w denoted `(w).
I `(w) = #{(i < j) | w(i) > w(j)} (inversions).
I si1si2 · · · sik is a reduced expression for w .

Example. w = [2, 1, 4, 3, 7, 6, 5] ∈ S7 has 5 inversions, `(w) = 5.

w = [2, 1, 4, 3, 7, 6, 5] = s1s3s6s5s6 = s3s1s6s5s6 = s3s1s5s6s5 = . . .



Symmetric Groups

Poincaré polynomials. Interesting q-analog of n!:

∑
w∈Sn

q`(w) = (1+q)(1+q +q2) · · · (1+q +q2 + . . .+qn−1) = [n]q!.

Examples.
[2]q! = 1 + q
[3]q! = 1 + 2q + 2q2 + q3

[4]q! = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6

Open. Find a simple formula for the coefficient of qk in [n]q!
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Symmetric Groups

Eulerian polynomials. Another interesting q-analog of n!:

An(q) =
n−1∑
k=0

An,kqk =
∑

w∈Sn

qasc(w)

where Ascents(w) = {i | w(i) > w(i + 1)} and
asc(w) = #Ascents(w). See Petersen’s book “Eulerian Numbers.”

Examples. A2(q) = 1 + q
A3(q) = 1 + 4q + q2

A4(q) = 1 + 11q + 11q2 + q3

Theorem. (Holte 1997, Diaconis-Fulman 2009) When adding
together n large randomly chosen numbers in any base, the
probability of carrying a k for 0 ≤ k < n is approximately An,k/n!.
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Parabolic Subgroups and Cosets
Defn. For any subset I ∈ {1, 2, . . . , n − 1} = [n − 1], let WI be
the parabolic subgroup of Sn generated by 〈si | i ∈ I〉.

Defn. Sets of permutations of the form wWI (or WIw) are left
(or right) parabolic cosets for WI for any w ∈ Sn.

Example. Take I = {1, 3, 4} and w = [3, 4, 1, 2, 5]. Then the left
coset wWI includes the 12 permutations

[34125] [34152] [34215] [34512] [34251] [34521]
[43125] [43152] [43215] [43512] [43251] [43521]

Facts.
I Every parabolic coset has a unique minimal and a unique

maximal length element.
I Every parabolic coset for WI has size |WI |.
I Sn is the disjoint union of the n!/|WI | left parabolic cosets

Sn/WI .
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Parabolic Double Cosets

Defn. Let I, J ∈ [n − 1] and w ∈ Sn, then the sets of
permutations the form WI · w ·WJ are parabolic double cosets.

Example. Take I = {2}, J = {1, 3, 4} and w = [3, 4, 1, 2, 5].
Then the parabolic double coset WIwWJ includes

[34125] [34152] [34215] [34512] [34251] [34521]
[43125] [43152] [43215] [43512] [43251] [43521]

plus

[24135] [24153] [24315] [24513] [24351] [24531]
[42135] [42153] [42315] [42513] [42351] [42531]

Example. WI [4, 5, 1, 2, 3] WJ has 12 elements.
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Parabolic Double Cosets

Facts.
I Parabolic double coset for WI , WJ can have different sizes.

I Sn is the disjoint union of the parabolic double cosets

WI\Sn/WJ = {WIwWJ | w ∈ Sn}.

I Every parabolic double coset has a unique minimal and a
unique maximal length element.

Thm.(Kobayashi 2011) Every parabolic double coset is an interval
in Bruhat order. The follow polynomials are palindromic

PI,w ,J(q) =
∑

v∈WIwWJ

q`(v).
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Connection to Richardson Varieties

Thm. The Richardson variety in GLn(C)/B indexed by u < v is
smooth if and only if the following polynomial is palindromic∑

u≤v≤w
q`(v).

References on smooth Richardson varieties: See book by
Billey-Lakshmibai, and papers by Carrell, Billey-Coskun,
Lam-Knutson-Speyer, Kreiman-Lakshmibai, Knutson-Woo-Yong,
Lenagan-Yakimov and many more.



Counting Parabolic Double Cosets

Question 1. For a fixed I, J , how many distinct parabolic double
cosets are there in WI\Sn/WJ?

Question 2. Is there a formula for f (n) =
∑
I,J
|WI\Sn/WJ |?

Question 3. How many distinct parabolic double cosets are there
in Sn in total?



Counting Double Cosets

I G= finite group
I H, K = subgroups of G
I H\G/K = double cosets of G with respect to H, K

= {HgK : g ∈ G}

Generlization of Question 1. What is the size of H\G/K?

One Answer..
The size of H\G/K is given by the inner product of the characters
of the two trivial representations on H and K respectively induced
up to G .

Reference: Stanley’s “Enumerative Combinatorics” Ex 7.77a.
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Counting Parabolic Double Cosets

Question 2. Is there a formula for f (n) =
∑
I,J
|WI\Sn/WJ |?

Data. 1, 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161
(A120733 in OEIS)

This counts the number of “two-way contingency tables” (see
Diaconis-Gangoli 1994), the dimensions of the graded components
of the Hopf algebra MQSym (see Duchamp-Hivert-Thibon 2002),
and the number of cells in a two-sided analogue of the Coxeter
complex (Petersen).



Counting Parabolic Double Cosets

Question 3. How many distinct parabolic double cosets are there
in Sn in total?

Data.: p(n) = |{WIvWJ | v ∈ Sn, I, J ⊂ [n − 1]}|,

1, 3, 19, 167, 1791, 22715, 334031, 5597524, 105351108, 2200768698

Not formerly in the OEIS! Now, see A260700.



Counting Parabolic Double Cosets

Question 3. How many distinct parabolic double cosets are there
in Sn in total?

Defn. For w ∈ Sn, let cw be the number of distinct parabolic
double cosets with w minimal.

One Answer. p(n) =
∑

w∈Sn

cw .



Representing Parabolic Double Cosets

Lemma. w is minimal in WIwWJ if and only if `(si w) > `(w) for
all i ∈ I and `(wsj) > `(w) for all j ∈ J . So

cw = #{WIwWJ | I ⊂ Ascent(w−1), J ⊂ Ascent(w)}.

Observation. Sometimes WIwWJ = WI′wWJ ′ even if
I, I ′ ⊂ Ascent(w−1) and J , J ′ ⊂ Ascent(w).

Dilemma. Which representation is best for enumeration?



Representing Parabolic Double Cosets

Example. w = [3, 4, 1, 2, 5] = w−1, Ascent(w) =

{1, 3, 4},
ws1 = [4, 3, 1, 2, 5] = s3w so W{3}wW{} = W{}wW{1}.
ws4 = [3, 4, 1, 5, 2] 6= si w for any i and
s4w = [3, 5, 1, 2, 4] 6= wsi for any i .

Defn. A small ascent for w is an ascent j such that wsj = si w .
Every other ascent is large.

Enumeration Principle. To count distinct parabolic double
cosets WIwWJ with w minimal, J can contain any subset of large
ascents for w , I can contain any subset of large ascents for w−1,
count the small ascents very carefully!
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Counting Parabolic Double Cosets

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)
1. There is a finite family of 81 integer sequences {bIm | m ≥ 0},

such that for any permutation w , the total number of
parabolic double cosets with minimal element w is equal to

cw = 2|Floats(w)| ∑
T⊆Tethers(w)

 ∏
R∈Rafts(w)

bI(R,T )
|R|

 .

2. The sequences bIm satisfy a linear recurrence, and thus can be
easily computed in time linear in m.

3. The expected number of tethers for any given permutation is
approximately 1/n.
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The Marine Model

Main Formula. For w ∈ Sn,

cw = 2|Floats(w)| ∑
T⊆Tethers(w)

 ∏
R∈Rafts(w)

bI(R,T )
|R|

 .

The w-Ocean.
1. Take 2 parallel copies of the Coxeter graph G of Sn

2. Connect vertex i ∈ Ascent(w−1) and vertex j ∈ Ascent(w) by
a new edge called planks whenever wsj = si w .

3. Remove all edges not incident to a small ascent.



The Marine Model

Example. Rafts, tethers, floats and ropes of the w ocean
w = (1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13).

rope raft tetherraft float rope raft raft

The Marine Model Terminology.
1. Raft – a maximal connected component of adjacent planks.
2. Float – a large ascent not adjacent to any rafts.
3. Rope – a large ascent adjacent to exactly one raft.
4. Tether – a large ascent connected to two rafts.



The Marine Model

Example. w = (1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13).

rope raft tetherraft float rope raft raft

cw = 2|Floats(w)| ∑
T⊆Tethers(w)

 ∏
R∈Rafts(w)

bI(R,T )
|R|

 .

= 22(b(4,8)
2 · b(4,8)

1 · b(4,8)
2 · b(4,8)

4 + b(4)
2 · b(4)

1 · b(4)
2 · b(4)

4

+b(8)
2 · b(8)

1 · b(8)
2 · b(8)

4 + b()
2 · b

()
1 · b

()
2 · b

()
4 )

= 22(71280 + 136620 + 144180+245640) = 2, 390, 880



Proof Sketch

Defn. (I, J) is lex minimal over all pairs (I ′, J ′) such that
D = W ′

I wW ′
J provided |I| < |I ′| or |I| = |I ′| and |J | < |J ′|.

Lemma. The lex minimal pair for a parabolic double coset is
unique.

Lemma. Lex minimal pairs along any one raft correspond with
words in the finite automaton below (loops are omitted), hence
then are enumerated by a rational generating function PI(x)/Q(x)
by the Transfer Matrix Method.



Coxeter Groups

I G = Coxeter graph with vertices {1, 2, . . . , n},
edges labeled by Z≥3 ∪∞ .

•1 4 •2 3 •3 3 •4 ≈ •1 4 •2 •3 •4

I W = Coxeter group generated by S = {s1, s2, . . . , sn} with
relations

1. s2
i = 1.

2. si sj = sjsi if i , j not adjacent in G .
3. si sjsi · · ·︸ ︷︷ ︸

m(i,j) gens

= sjsi sj · · ·︸ ︷︷ ︸
m(i,j) gens

if i , j connected by edge labeled m(i , j).



Examples

Dihedral groups: Dih10 •1 5 •2

Symmetric groups: S5 •1 •2 •3 •4

Hyperoctahedral groups: B4 •1 4 •2 •3 •4

E8: •1 •2 •3 •4 •5 •6 •7

|

•8



Generalizing the notation from Symmetric Groups

I W = Coxeter group generated by S = {s1, s2, . . . , sn} with
special relations.

I `(w) = length of w = length of a reduced expression for w .

I WI = 〈si | i ∈ I〉 is a parabolic subgroup of W .

I WIwWJ is a parabolic double coset of W for any I, J ⊂ [n],
w ∈W .

I cw = number of distinct parabolic double cosets in W with
minimal element w .



Generalizing Main Theorem to Coxeter Groups

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)
1. For every finite Coxeter group W and w ∈W , we have

cw = 2|Floats(w)| ∑
T⊆Tethers(w)
W⊆Wharfs(w)

 ∏
R∈Rafts(w)

bI(R,T ,W )
|R|

 .

2. The sequences bI(R,T ,W )
m satisfy a linear recurrence.

3. We generalize the formula for cw to infinite families of
Coxeter groups given by subdividing a fixed Coxeter graph G .
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Mozes Numbers Game

Algorithm. Generates canonical representative for each element
in a Coxeter group using its graph.
(See Mozes 1990, Eriksson-Eriksson 1998, Björner-Brenti Book)

Input: Coxeter graph G and expression si1si2 . . . sip = w .

Start: Each vertex of graph G assigned value 1. Replace each edge
(i , j) of G by two opposing directed edges labeled fij > 0 and
fji > 0 so that fij fji = 4cos2

(
π

m(i ,j)

)
or fij fji = 4 if m(i , j) =∞.

Good choices:
m(i , j) fij fji

3 1 1
4 2 1
6 3 1



Mozes Numbers Game

Loop. For each sik in si1si2 . . . sip fire node ik .

To fire node i , add to the value of each neighbor j the current
value at node i multiplied by fij . Negate the value on node i .

Output.: G(w) = the final values on the nodes of G .



Mozes Numbers Game

Loop. For each sik in si1si2 . . . sip fire node ik .

To fire node i , add to the value of each neighbor j the current
value at node i multiplied by fij . Negate the value on node i .

Output.: G(w) = the final values on the nodes of G .

Properties:
1. Output only depends on the product si1si2 . . . sip and not on

the particular choice of expression.
2. Node i is negative in G(w) iff `(wsi ) < `(w).
3. Node i never has value 0.
4. If I ⊂ S, modify the game to get representatives for W /WI by

starting with initial value 0 on nodes in I. Then wsi = w iff
node i has value 0. Useful for studying parabolic cosets.



Open Problems

1. Follow up to Question 3: Is there a simpler or more efficient
formula for the total number of distinct parabolic double
cosets are there in Sn than the one given here?

2. Follow up to Question 2: Is there a simpler or more efficient
formula for f (n) =

∑
I,J
|WI\Sn/WJ |?

3. What other families of double cosets have interesting
enumeration formulas?
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