# Consequences of the Lakshmibai-Sandhya Theorem

Sara Billey
University of Washington
http://www.math.washington.edu/~billey

AWM Anniversary Conference, September 18, 2011

#### Outline

- 1. Schubert varieties
- 2. Pattern Avoidance in Permutations
- 3. The Lakshmibai-Sandhya Theorem and its Consequences
- 4. Open Problems

#### Thanks!

The AWM has played a central role in improving the lives of women and men in mathematics. Keep up the good work!

Also, thanks to Rebecca Goldin and Julianna Tymoczko for organizing this session!

# **Enumerative Geometry**

Approximately 150 years ago...Grassmann, Schubert, Pieri, Giambelli, Severi, and others began the study of *enumerative geometry*.

#### Early questions:

- What is the dimension of the intersection between two general lines in  $\mathbb{R}^2$ ?
- How many lines intersect two given lines and a given point in  $\mathbb{R}^3$ ?
- How many lines intersect four given lines in  $\mathbb{R}^3$  ?

#### Modern questions:

• How many points are in the intersection of 2,3,4,... Schubert varieties in general position?

# Why Study Schubert Varieties?

- 1. It can be useful to see points, lines, planes etc as families of Schubert varieties with certain properties.
- 2. Schubert varieties provide interesting examples for test cases and future research in algebraic geometry, combinatorics, representation theory, symplectic geometry, and theoretical physics.
- 3. Applications in discrete geometry, computer graphics, and computer vision.

# The Flag Manifold

**Canonical Form.** Every flag can be represented as a matrix in row echelon form.

$$F_{\bullet} = \langle 6e_1 + 3e_2, 4e_1 + 2e_3, 9e_1 + e_3 + e_4, e_2 \rangle$$

$$\approx \left[ \begin{array}{cccc} 6 & 3 & 0 & 0 \\ 4 & 0 & 2 & 0 \\ 9 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{array} \right] = \left[ \begin{array}{ccccc} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -2 \end{array} \right] \left[ \begin{array}{ccccc} 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 7 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

$$\approx \langle 2e_1 + e_2, 2e_1 + e_3, 7e_1 + e_4, e_1 \rangle$$

$$\mathcal{F}l_n(\mathbb{C}):=$$
 flag manifold over  $\mathbb{C}^n=\{$ complete flags  $F_ullet\}$  
$$=B\setminus GL_n(\mathbb{C}),\;\;B=\text{lower triangular mats}.$$

# The Flag Manifold

**Defn.** A complete flag  $F_{\bullet} = (F_1, \ldots, F_n)$  in  $\mathbb{C}^n$  is a nested sequence of vector spaces such that  $\dim(F_i) = i$  for  $1 \leq i \leq n$ .  $F_{\bullet}$  is determined by an ordered basis  $\langle f_1, f_2, \ldots f_n \rangle$  where  $F_i = \operatorname{span}\langle f_1, \ldots, f_i \rangle$ .

#### Example.

$$F_{\bullet} = \langle 6e_1 + 3e_2, 4e_1 + 2e_3, 9e_1 + e_3 + e_4, e_2 \rangle$$



# Flags and Permutations

Example. 
$$F_{ullet} = \langle 2e_1 + e_2, \ 2e_1 + e_3, \ 7e_1 + e_4, \ e_1 \rangle pprox \left[ egin{array}{cccc} 2 & \textcircled{1} & 0 & 0 \\ 2 & 0 & \textcircled{1} & 0 \\ 7 & 0 & 0 & \textcircled{1} \\ \textcircled{1} & 0 & 0 & 0 \end{array} \right]$$

**Note.** If a flag is written in canonical form, the positions of the leading 1's form a permutation matrix. There are 0's to the right and below each leading 1. This permutation determines the *position* of the flag  $F_{\bullet}$  with respect to the reference flag  $E_{\bullet} = \langle e_1, e_2, e_3, e_4 \rangle$ .



# Many ways to represent a permutation

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} = 2341 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

matrix two-line one-line rank notation notation notation table

diagram of a permutation string diagram reduced word

# The Schubert Variety $X_w(E_{\bullet})$ in $\mathcal{F}l_n(\mathbb{C})$

 $egin{aligned} \mathbf{Defn.} \ X_w(E_ullet) &= \mathsf{Closure} \ \mathsf{of} \ C_w(E_ullet) \ \mathsf{under} \ \mathsf{the} \ \mathsf{Zariski} \ \mathsf{topology} \ \ &= \{F_ullet \in \mathcal{F}l_n \mid \dim(E_i \cap F_j) \geq \mathrm{rk}(w[i,j])\} \end{aligned}$  where  $E_ullet = \langle e_1, \ e_2, \ e_3, \ e_4 \ 
angle.$ 

Example. 
$$\begin{bmatrix} \textcircled{1} & 0 & 0 & 0 \\ 0 & * & \textcircled{1} & 0 \\ 0 & * & 0 & \textcircled{1} \\ 0 & \textcircled{1} & 0 & 0 \end{bmatrix} \in X_{2341}(E_{\bullet}) = \overline{\left\{ \begin{bmatrix} * & 1 & 0 & 0 \\ * & 0 & 1 & 0 \\ * & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right\}}$$

#### Why?.



# The Schubert Cell $C_w(E_{\bullet})$ in $\mathcal{F}l_n(\mathbb{C})$

#### Easy Observations.

- ullet dim $_{\mathbb{C}}(C_w)=l(w)=\#$  inversions of w.
- ullet  $C_w = w \cdot B$  is a B-orbit using the right B action, e.g.

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_{1,1} & 0 & 0 & 0 \\ b_{2,1} & b_{2,2} & 0 & 0 \\ b_{3,1} & b_{3,2} & b_{3,3} & 0 \\ b_{4,1} & b_{4,2} & b_{4,3} & b_{4,4} \end{bmatrix} = \begin{bmatrix} b_{2,1} & b_{2,2} & 0 & 0 \\ b_{3,1} & b_{3,2} & b_{3,3} & 0 \\ b_{4,1} & b_{4,2} & b_{4,3} & b_{4,4} \\ b_{1,1} & 0 & 0 & 0 \end{bmatrix}$$

# Combinatorics and Geometry

Fact. The closure relation on Schubert varieties defines a nice partial order.

$$X_w = igcup_{v \le w} C_v \qquad = igcup_{v \le w} X_v$$

Bruhat order (Ehresmann 1934, Chevalley 1958) is the transitive closure of

$$w < wt_{ij} \iff w(i) < w(j).$$

**Example.** Bruhat order on permutations in  $S_3$ .



Observations. Self dual, rank symmetric, rank unimodal.

# Bruhat order on $S_4$



# Poincaré polynomials

 $\overline{\mathrm{Fact}}.$  The *Poincaré polynomial* for  $H^*(X_w)$  is  $P_w(t) = \sum_{v \leq w} t^{l(v)}.$ 

Example. w = 3412

4: (3412)

3: (3142)(3214)(1432)(2413)

2: (3124)(1342)(2143)(2314)(1423)

1: (2134)(1243)(1324)

0: (1234)

Poincaré polynomial:.  $P_{3412}(t) = 1 + 3t + 5t^2 + 4t^3 + t^4$ .

# Bruhat order on $S_5$



#### 10 Fantastic Facts on Bruhat Order

- 1. Bruhat Order Characterizes Inclusions of Schubert Varieties
- 2. Contains Young's Lattice in  $S_{\infty}$
- 3. Nicest Possible Möbius Function
- 4. Beautiful Rank Generating Functions
- 5. [x,y] Determines the Composition Series for Verma Modules
- 6. Symmetric Interval  $[\hat{0},w] \iff X(w)$  rationally smooth
- 7. Order Complex of (u, v) is shellable
- 8. Rank Symmetric, Rank Unimodal and k-Sperner
- 9. Efficient Methods for Comparison
- 10. Amenable to Pattern Avoidance

# Lakshmibai-Sandhya Theorem

**Fact.** There exists a simple criterion for characterizing smooth Schubert varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper)  $X_w$  is non-singular  $\iff w$  has no subsequence with the same relative order

as 3412 and 4231.

$$w=625431$$
 contains  $6241\sim4231$   $\Longrightarrow X_{625431}$  is singular Example:  $w=612543$  avoids  $4231$   $\Longrightarrow X_{612543}$  is non-singular  $\&3412$ 

# 10 Pattern Properties

Prop 1. (Carrell-Peterson, Deodhar, Gasharov) (ca 1994)

The following are equivalent

- 1.  $X_w$  is smooth.
- 2.  $\boldsymbol{w}$  avoids 3412 and 4231.
- 3. The Kazhdan-Lusztig polynomial  $P_{id,w}=1$ .
- 4. The Bruhat graph for w is regular.
- 5. The Poincare polynomial for w,  $P_w(t) = \sum_{v \leq w} t^{l(v)}$  is palindromic.
- 6. The Poincare polynomial for  $oldsymbol{w}$  factors nicely

$$P_w(t)=\prod_{i=1}^k(1+t+t^2+\cdots+t^{e_i})$$

21 Years Later ...

Consequences of the Lakshmibai-Sandhya Theorem:

- 1. Testing for smoothness of Schubert varieties can be done in polynomial time,  $O(n^4)$ .
- 2. There is an explicit formula for counting the number  $v_n$  of smooth Schubert varieties for  $w \in S_n$  due to Haiman (see also Bousquet-Mélou+Butler):

$$V(t) = \frac{1 - 5t + 3t^2 + t^2\sqrt{1 - 4t}}{1 - 6t + 8t^2 - 4t^3}$$
$$= t + 2t^2 + 6t^3 + 22t^4 + 88t^5 + 366t^6 + 1552t^7 + 6652t^8 + O$$

3. Many geometrical properties of Schubert varieties are now characterized by pattern avoidance or a variation on this theme.

Let me tell you about 10 of them!

# 10 Pattern Properties

Prop 2. (Billey-Warrington, Manivel, Kassel-Lascoux-Reutenauer, Cortez ) (2000)

 $X_v$  is an irreducible component of the singular locus of  $X_w \iff$ 

$$v = w \cdot (1$$
-cycle permutation)

corresponding to a 4231 or 3412 or 45312 pattern of the following form



Here o's denote 1's in w,  $\bullet$ 's denote 1's in v.

# 10 Pattern Properties

Thm. (Zariski) X is a smooth variety  $\iff$  the local ring at every point is regular.

Def. X is factorial at a point  $\iff$  the local ring at that point is a unique factorization domain.

Prop 3. (Bousquet-Mélou+Butler, 2007, conj. by Woo-Yong)

 $X_w$  is factorial at every point  $\iff w$  avoids 4231 and 3412.

# 10 Pattern Properties

**Prop 5.** (Gasharov-Reiner, 2002)  $X_w$  is defined by inclusions of the form  $F_i \subset \operatorname{span}(e_1, \ldots, e_j)$  or  $\operatorname{span}(e_1, \ldots, e_j) \subset F_i \iff w$  avoids

4231, 35142, 42513, 351624.

Gasharov-Reiner show that Schubert varieties defined by inclusions have a nice presentation for their cohomolog ring.

#### 10 Pattern Properties

**Prop 4.** There exists a simple criterion for characterizing Gorenstein Schubert varieties using modified pattern avoidance.

**Def.** X is *Gorenstein* if it is CM and its canonical sheaf is a line bundle.

Theorem: Woo-Yong (2004)

 $X_w$  is Gorenstein  $\iff$ 

- ullet w avoids 31542 and 24153 with Bruhat restrictions  $\{t_{15},t_{23}\}$  and  $\{t_{15},t_{34}\}$
- for each descent d in w, the associated partition  $\lambda_d(w)$  has all of its inner corners on the same antidiagonal.

# 10 Pattern Properties

Prop 6. (Deodhar, Billey-Warrington, 1998)

The following are equivalent

- 1. The Bott-Samelson resolution of  $X_w$  is small.
- 2. w is 321-hexagon avoiding, i.e. avoids

321, 56781234, 56718234, 46781235, 46718235

3. 
$$\sum_{v \le w} t^{l(v)} P_{v,w}(t) = (1+t)^{l(w)}$$
.

4. For each  $v \leq w$ , the Kazhdan-Lusztig polynomial  $P_{v,w}(t) = \sum_{\sigma \in E(v,w)} t^{ ext{defec}}$ 

# 10 Pattern Properties

Prop 7. (Tenner, 2006)

The principle order ideal below w in Bruhat order is a Boolean lattice  $\iff w$  is 321 and 3412 avoiding.

Note: Boolean permutations are 321-hexagon avoiding.

#### 10 Pattern Properties

**Prop 9.** (Billey-Postnikov, Billey-Braden, 2003) Pattern avoidance can be generalized to all Coxeter groups using inversion sets of positive roots.

In particular, for all semisimple simple, connected Lie groups G and Borel subgroups B, the smooth and rationally smooth Schubert varieties in G/B can be characterized by avoiding certain generalized patterns. Only requires checking patterns of types  $A_3, B_2, B_3, C_2, C_3, D_4, G_2$ .

# 10 Pattern Properties

**Prop 8.** (Woo, 2009)

The Kazhdan-Lusztig polynomial  $P_{id,w}(1)=2\iff w$  avoids 653421, 632541, 463152, 526413, 546213, and 465132 and the singular locus of  $X_w$  has exactly 1 component.

Def. 
$$KL_m = \{ w \in S_{\infty} \mid P_{id,w}(1) \leq m \}.$$

Example.  $KL_1$  are the permutations indexing smooth Schubert varieties.

Extension (Billey-Weed):  $KL_2$  is characterized by 66 permutation pattern on 5,6,7 or 8 entries.

Open:  $KL_m$  is closed under taking patterns. Can it always be described by a finite set of patterns?

# 10 Pattern Properties

**Prop** 10. Patterns are useful to describe smooth and rationally smooth Schubert varieties in the affine flag manifold.

Def. Let G be the Kac Moody group of type  $\widetilde{A}_{n-1}$  and I = Iwahori subgroup of G, then G/I is the affine flag manifold.

Equivalently,  $G/Ipprox \widetilde{G}/\widetilde{B}$  where

$$\widetilde{G} = SL_n(\mathbb{C}[t, t^{-1}]), \qquad \widetilde{B} = \{M \in \widetilde{G} \mid M|_{t=0} \in B\}.$$

# 10 Pattern Properties

In the affine flag manifold,

ullet Affine Schubert varieties are indexed by affine permutations  $w\in \widetilde{S}_n$ :

$$w: \mathbb{Z} \longrightarrow \mathbb{Z}$$

s.t. 
$$w(i+n) = w(i) + n \ \forall i \ \text{and} \ w(1) + w(2) + \dots + w(n) = \binom{n+1}{2}$$
.

• An affine permutation w contains a classical permutation v if there exists a subsequence of w with the same relative order as  $v = v_1 \dots v_k$ .

# **Open Problems**

- 1. Give a pattern based algorithm to produce the factorial and/or Gorenstein locus of a Schubert variety.
- 2. Describe the maximal singular locus of a Schubert variety for other semisimple Lie groups using generalized pattern avoidance.
- 3. Find a method to "learn" marked mesh patterns by computer.
- 4. Conjecture (Woo): The Schubert varieties with multiplicity  $\leq 2$  can be characterized by pattern avoidance.
- 5. (From Úlfarsson) Is there a nice generating function to count the number of factorial and/or Gorenstein permutations.
- 6. Find a geometric explanation why a finite number of patterns suffice in all cases above.
- 7. What is the right notion of patterns for GKM spaces?

# 10 Pattern Properties

Thm. (Billey-Crites, 2011+)

An affine Schubert variety  $X_w$  is rationally smooth  $\iff w \in \widetilde{S}_n$  avoids 3412 and 4231 or w is a twisted spiral permutation of length k(n-1) for some k>1.

Thm. (Chen-Crites-Kuttler, manuscript)

An affine Schubert variety  $X_w$  is smooth  $\iff w \in \widetilde{S}_n$  avoids 3412 and 4231. Furthermore, the tangent space to  $X_w$  at the identity can be described in terms of reflection over real and imaginary roots.

# Some Recommended Further Reading

- $1. \ \, {\sf Tenner's \ Database: \ http://math.depaul.edu/bridget/patterns.html}$
- 2. "A Unification Of Permutation Patterns Related To Schubert Varieties" by Henning Úlfarsson, arXiv:1002.4361v6.