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Abstract. In analogy with the symmetric group, we define the vexillary elements in the hyperoctahedral group
to be those for which the Stanley symmetric function is a single SchurQ-function. We show that the vexillary
elements can be again determined by pattern avoidance conditions. These results can be extended to include the
root systems of typesA, B, C, andD. Finally, we give an algorithm for multiplication of SchurQ-functions with
a superfied Schur function and a method for determining the shape of a vexillary signed permutation using jeu de
taquin.
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1. Introduction

The vexillary permutations in the symmetric group have interesting connections with
the number of reduced words, the Littlewood-Richardson rule, Stanley symmetric func-
tions, Schubert polynomials and the Schubert calculus. Lascoux and Sch¨utzenberger [16]
have shown that vexillary permutations are characterized by the property that they avoid
any subsequence of length 4 with the same relative order as 2143. Macdonald has given a
good overview of vexillary permutations in [18]. In this paper we propose a definition for
vexillary elements in the hyperoctahedral group. We show that the vexillary elements can
again be determined by pattern avoidance conditions.

We begin by reviewing the history of the Stanley symmetric functions and establishing
our notation. We have included several propositions from the literature, which we have
used in the proof of the main theorem. In Section 3, we have defined the vexillary elements
in the symmetric group and the hyperoctahedral group to be those elements for which the
corresponding Stanley symmetric function is a single Schur function or SchurQ-function
respectively with coefficient 1. We state and prove that the vexillary elements are precisely
those elements which avoid 18 different patterns of lengths 3 and 4. Due to the quantity
of cases that need to be analyzed we have used a computer to verify a key lemma in the
proof of the main theorem. The definition of vexillary can be extended to cover the root
systems of typeA, B, C, andD; in all four cases the definition is equivalent to avoiding
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certain patterns. In Section 4, we give an algorithm for multiplication of SchurQ-functions
with a superfied Schur function. In Section 5, we describe a method of finding the Stanley
symmetric function of a vexillary signed permutation using jeu de taquin. We conclude
with several open problems related to vexillary elements in the hyperoctahedral group.

2. The hyperoctahedral group and Stanley symmetric functions

Let Sn be the symmetric group whose elements are permutations written in one-line notation
as [w1, w2, . . . , wn]. Sn is generated by the adjacent transpositionsσi for 1≤ i < n, where
σi interchanges positionsi andi + 1 when acting on the right, i.e., [. . . , wi , wi+1, . . .]σi =
[. . . , wi+1, wi , . . .].

Let Bn be the hyperoctahedral group (or signed permutation group). The elements ofBn

are permutations with a sign attached to every entry. We use the compact notation where a bar
is written over an element with a negative sign. For example, [3̄, 2, 1̄] ∈ B3. Bn is generated
by the adjacent transpositionsσi for 1 ≤ i < n, as inSn, along withσ0 which acts on the
right by changing the sign of the first element, i.e., [w1, w2, . . . , wn]σ0 = [w1, w2, . . . , wn].

If w can be written as a product of the generatorsσa1σa2 · · · σap and p is minimal, then
the concatenation of the indicesa1a2 · · ·ap is areduced wordfor w, andp is thelengthof
w, denotedl (w). Let R(w) be the set of all reduced words forw. The signed (or unsigned)
permutations [w1, . . . , wn] and [w1, . . . , wn, n+1, n+2, . . .] have the same set of reduced
words. For our purposes it will be useful to consider these signed permutations as the same
in the infinite groupsS∞ = ∪Sn or B∞ = ∪Bn.

Let sλ be the Schur function of shapeλ and letQλ be the SchurQ-function of shapeλ.
See [17] for definitions of these symmetric functions.

Definition 1 Forw ∈ Sn, define theSn Stanley symmetric function by

Gw(X) =
∑

a∈R(w)

∑
(i1≤···≤i l )∈A(D(a))

xi1xi2 · · · xil , (1)

whereA(D(a)) is the set of all weakly increasing sequences such that ifak−1 > ak, then
i k−1 < i k.

Forw ∈ Bn, define theCn Stanley symmetric function by

Fw(X) =
∑

a∈R(w)

∑
(i1≤···≤i l )∈A(P(a))

2|i|xi1xi2 · · · xil , (2)

whereA(P(a)) is the set of all weakly increasing sequences such that ifak−1<ak>ak+1

then we don’t havei k−1 = i k = i k+1, (i.e., we cannot have equality across a peak in
the corresponding reduced word), and|i| denotes the number of distinct valuesi j in the
admissible sequence, i.e., the number of distinct variables in the monomial.

In [23], Stanley showed thatGw is a symmetric function and used it to express the number
of reduced words of a permutationw in terms of f λ, the number of standard tableaux of
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shapeλ. Namely,

#R(w) =
∑

αλw f λ, (3)

whereαλw is the coefficient ofsλ in Gw. Bijective proofs of (3) were given independently by
Lascoux and Sch¨utzenberger [15] and Edelman and Greene [6]. Reiner and Shimozono [21]
have given a new interpretation of the coefficientsαλw in terms ofD(w)-peelable tableaux.

Stanley also conjectured that there should be an analog of (3) forBn. This conjecture
was proved independently by Haiman [9] and Kra´skiewicz [10] in the following form:

#R(w) =
∑

βλwgλ, (4)

wheregλ is the number of standard tableaux on the shifted shapeλ, andβλw is the coefficient
of Qλ whenFw is expanded in terms of the SchurQ-functions.

The Stanley symmetric functions can also be defined using the nilCoxeter algebra of
Sn andBn, see [7, 8]. The relationship between Kra´skiewicz’s proof of (4) andBn Stanley
symmetric functions is explored in [12]. See also [2, 13, 27] for other connections to Stanley
symmetric functions. The functionsFw are usually referred to as the Stanley symmetric
functions of typeC because they are related to the root systems of typeC. The Weyl groups
for the root systems of typeB andC are isomorphic, so we can study the groupBn by
studying either root system. We consider the root systems of typeB and D at the end of
Section 3.

The Stanley functionsFw can easily be computed using Proposition 2 below which is
stated in terms of special elements inBn. There are two types of “transpositions” in the hy-
peroctahedral group. These transpositions correspond to reflections in the Weyl group of the
root systemBn. Let ti j be a transposition of the usual type, i.e., [. . . , wi , . . . , w j , . . .]ti j =
[. . . , w j , . . . , wi , . . .]. Let si j , i < j be a transposition of two elements that also switches
sign [. . . , wi , . . . , w j , . . .]si j = [. . . , w j , . . . , wi , . . .]. We definesii to be the “transposi-
tion” which changes the sign of thei th element, i.e., [. . . , wi , . . .]sii = [. . . , wi , . . .]. A
signed permutationw is said to have adescentat r if wr > wr+1.

Proposition 2 ([1]) The Stanley symmetric functions of type C have the following recur-
sive formulas:

Fw =
∑

0<i<r
l (wtrstir )=l (w)

Fwtrstir +
∑
0<i

l (wtrssir )=l (w)

Fwtrssir , (5)

where r is the last descent ofw,and s is the largest position such thatws<wr . The recursion
terminates whenw is strictly increasing in which case Fw = Qλ, whereλ is the partition
obtained from arranging{|wi | :wi < 0} in decreasing order.

For example, letw = [4̄, 1, 2̄, 3]. Thenr = 2 sincew2 > w3 is a descent andw3 < w4,
ands= 3 sincew3 < w2 < w4. This implieswtrs = [4̄, 2̄, 1, 3] and we have

F[4̄,1,2̄,3] = F[4̄,1,2̄,3]t23t12
+ F[4̄,1,2̄,3]t23s42

= F[2̄,4̄,1,3]+ F[4̄,3̄,1,2]. (6)
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Continuing to expand the right-hand side we see [4̄, 3̄, 1, 2] is strictly increasing, so
F[4̄,3̄,1,2]= Q(4,3) andF[2̄,4̄,1,3]= F[2̄,4̄,1,3]t12s15

= F[5̄,2̄,1,3,4]= Q(5,2). Hence,F[4̄,1,2̄,3]= Q(4,3)

+ Q(5,2).
Note thatl (wtrs) is always equal tol (w) − 1 in Proposition 2 because of the choice

of r and s. Hence, ifl (wtrsτir ) = l (w), then l (wtrsτir ) = l (wtrs) + 1 whereτi j is a
transposition of either type. The reflections which increase the length ofwtrs by exactly 1
are characterized by the following two propositions.

Proposition 3 ([19]) If w ∈ S∞ or B∞ and i< j, then l(wti j ) = l (w)+ 1 if and only if
• wi < w j

and no k exists such that
• i < k < j andwi < wk < w j .

Note that the first condition above guarantees thatl (wti j ) > l (w), and the second condi-
tion determines when the length is increased by exactly 1. Similarly, in the next proposition,
the first two conditions guarantee thatl (wsi j ) > l (w), and the next two conditions determine
whenl (wsi j )− l (w) is 1.

Proposition 4 ([1]) If w ∈ B∞, and i ≤ j, then l(wsi j ) = l (w)+ 1 if and only if
• −wi < w j and−w j < wi

• if i 6= j, eitherwi < 0 or w j < 0,

and no k exists such that either of the following is true:
• k < i and−w j < wk < wi

• k < j and−wi < wk < w j .

3. Main results

In this section we give the definition of the vexillary elements inSn andBn. Then we present
the main theorem. The proof follows after several lemmas.

Definition 5 If w ∈ Sn thenw is vexillary if Gw = sλ for some shapeλ ` l (w). Similarly,
if w ∈ Bn thenw is vexillary if Fw = Qλ for some shapeλ ` l (w) with distinct parts.

It follows from Eq. (3) that ifw is vexillary then the number of reduced words forw is the
number of standard tableaux of a single shape (unshifted forw ∈ Sn or shifted forw ∈ Bn).

ForSn, this definition is equivalent to the original definition of vexillary given by Lascoux
and Sch¨utzenberger in [16]. They showed that vexillary permutationsw are characterized
by the condition that no subsequencea < b < c < d exists such thatwb < wa < wd < wc.
This property is usually referred to as 2143-avoiding. Lascoux and Sch¨utzenberger also
showed that the Schubert polynomial of typeAn indexed byw is a flagged Schur function
if and only ifw is a vexillary permutation. One might ask if the Schubert polynomials of
typeB, C or D indexed by a vexillary element could be written in terms of a “flagged Schur
Q-function.”
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Many other properties of permutations can be given in terms of pattern avoidance. For
example, the reduced words of 321-avoiding [3] permutations all have the same content,
and a Schubert variety inSLn/B is smooth if and only if it is indexed by a permutation
which avoids the patterns 3412 and 4231 [11]. Also, West [28], Simion and Schmidt [22],
Noonan [20], and Bona [4, 5] have studied pattern avoidance more generally and given
formulas for computing the number of permutations which avoid combinations of patterns.
Recently, Stembridge [27] has described several properties of signed permutations in terms
of pattern avoidance as well.

We define pattern avoidance in terms of the following function whichflattensany sub-
sequence into a signed permutation.

Definition 6 Given any sequencea1a2 · · ·ak of distinct nonzero real numbers, define
fl(a1a2 · · ·ak) to be the unique elementb = [b1, . . . ,bk] in Bk such that

• For all j , bothaj andbj have the same sign.
• For all i, j , we have|bi | < |bj | if and only if |ai | < |aj |.

For example,fl(6̄, 3, 7̄, 0.5) = [3̄, 2, 4̄, 1]. Any word containing the subsequence6̄, 3, 7̄,
0.5 does not avoid the pattern3̄24̄1.

Another way to describe pattern avoidance is with the signed permutation matrices.
Namely, a signed permutation matrixw avoids the patternv if no submatrix ofw is the
matrixv.

Theorem 7 An elementw ∈ B∞ is vexillary if and only if every subsequence of length4 in
w flattens to a vexillary element in B4. In particular, w is vexillary if and only if it avoids
the following patterns:

3̄21̄ 3̄21 32̄1 321 3̄12

2̄31 1̄32 4̄1̄2̄3 4̄12̄3 3̄4̄1̄2̄

3̄4̄12̄ 34̄1̄2̄ 34̄12̄ 3142 2̄3̄41̄

2413 2̄341̄ 2143

(7)

This list of patterns was conjectured in [13]. Due to the large number of non-vexillary
patterns in (7) we have chosen to prove the theorem in two steps. First, we have verified
that the theorem holds forB6 (see Lemma 8). Second, we show that any counterexample
in B∞ would imply a counterexample inB6.

Lemma 8 Letw ∈ B6, thenw is vexillary if and only if it does not contain any subsequence
of length3 or 4 which flattens to a pattern in(7).

The LISP code used to verify Lemma 8 is available from the first author on request. In
summary, we verify that the following two statements are either both true or both false for
each elementw in B6:
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• Isw vexillary? (This is computed using the recurrence from Proposition 2)
• Doesw avoid all of the patterns in (7)? (Compare each flattened subsequence of lengths

3 and 4 with the pattern list).

Lemma 9 Letw be any signed permutation. Supposewi1wi2 · · ·wi k is a subsequence of
w, and let u∈ Bk befl(wi1wi2 · · ·wi k). Then the following statements hold:
1. If the last descent ofwi1wi2 · · ·wi k appears in position ir , then the last descent of u is in

position r.
2. If in addition, wi s <wi r and is is the largest index inw such that this is true, then us< ur

and s is the largest index in u such that this is true.
3. If v = wτi j i k thenfl(vi1 · · · vi k) = fl(wi1 · · ·wi k) · τ jk whereτi j i k andτ jk are transposi-

tions of the same type.

These facts follow directly from the definition of the flatten function.

Lemma 10 For anyv ∈ B∞ and any0< i < r, if l (vtir )− l (v)>0 then there exists an
index k such that i≤ k< r , vi ≤ vk<vr and l(vtkr )− l (v)= 1. Similarly, if l (vsir )− l (v)
> 0 then there exists an index k such that either
• k< r, vk<vr , and l(vtkr )− l (v) = 1, or
• k ≤ i, −vr <vk ≤ vi , and l(vskr )− l (v) = 1.

Proof: If l (vtir ) − l (v) > 0, consider the set{v j : i ≤ j < r andv j <vr }. This set is
nonempty sincevi is a member. Pickk such thatvk is the largest value in this set. Then no
j exists such thatk< j < r andvk<v j <vr , hence by Proposition 3,l (vtkr )− l (v) = 1.

Sayl (vsir ) − l (v) > 0. If there existsk< r such thatvk<vr , choosek such thatvk is
the largest value in{vk<vr : k< r }. Then noj exists such thatk< j < r andvk<v j <vr ,
hence by Proposition 3,l (vtkr )− l (v) = 1.

Otherwise, assumel (vsir ) − l (v) > 0 and nok exists such thatk< r andvk<vr . In
particular, this meansvi > vr . Recall from Proposition 4,l (vsir ) − l (v) > 0 implies that
eithervi < 0 or vr < 0 and not both. Thus,vi > 0 > vr . Choosek such thatvk is the
smallest value in{vk > −vr : k ≤ i }. This set is not empty sincevi is in the set from the
remarks just before Proposition 4. Furthermore, noj < r exists such that−vk<v j <vr

(by assumption), and noj ′< k exists such that−vr <v j ′ <vk (by choice ofk). Hence
l (vskr )− l (v) = 1 by Proposition 4. 2

Lemma 11 Given anyw ∈ B∞ and any subsequence ofw, saywi1wi2 · · ·wi k , let v =
fl(wi1wi2 · · ·wi k)∈ Bk. If l (wti j ,i k) − l (w) = 1 then l(vt jk) − l (v) = 1. Similarly, if
l (wsi j ,i k)− l (w) = 1 then l(vsjk)− l (v) = 1.

Proof: If l (wti j ,i k)−l (w) ≥ 1 thenwi j <wi k sov j <vk since the flatten map preserves the
relative order of the elements in the subsequence and signs. Therefore,l (vt jk)− l (v) ≥ 1.
If l (wti j ,i k) − l (w) = 1 then noi j <m< i k exists such thatwi j <wm<wi k . This in turn
implies that noj <m< k exists such thatv j <vm<vk, hencel (vt jk)− l (v) = 1.

If l (wsi j ,i k)− l (w)≥ 1 then−wi j <wi k and−wi k <wi j so−v j <vk and−vk<v j since
the flatten map preserves the relative order of the elements in the subsequence and signs.
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Also, if i j 6= i k then eitherwi j < 0 orwi k < 0 so eitherv j < 0 orvk< 0. Therefore,l (vsjk)−
l (v)≥ 1. If l (wsi j ,i k) − l (w)= 1 then nom< i k exists such that−wi j <wm<wi k , and no
m< i j exists such that−wi k <wm<wi j . This in turn implies that nom< k exists such that
−v j <vm<vk, and nom< j exists such that−vk<vm<v j , hencel (vsjk)− l (v) = 1. 2

Lemma 12 Given anyw ∈ B∞, if w is non-vexillary thenw contains a subsequence of
length4 which flattens to a non-vexillary element in B4.

Proof: Sincew is non-vexillary then eitherFw expands into multiple terms on the first step
of the recurrence in (5) or else the recurrence yieldsFw = Fv wherev is again non-vexillary.
Assume the first step of the recurrence gives

Fw = Fwtrsτir + Fwtrsτ jr + other terms

Let n be the smallest index such thatwi = i for all i > n, thenn+ 1 is greater thani, j, r
ands. Letα : {1, 2, 3, 4} → {i, j, r, s, n+1} be an order preserving map onto the 4 smallest
distinct numbers in the range. Letw′ = fl(wα(1)wα(2)wα(3)wα(4)). By Lemma 11

l
(
w′
[
tα−1(r )α−1(s)

][
τα−1(i )α−1(r )

]) = l (w′)

and

l
(
w′
[
tα−1(r )α−1(s)

][
τα−1( j )α−1(r )

]) = l (w′).

Therefore, the recursion implies

Fw′ = Fw′[tα−1(r )α−1(s)][τα−1(i )α−1(r )] + Fw′[tα−1(r )α−1(s)][τα−1( j )α−1(r )] + other terms.

Hence,w′ ∈ B4 is not vexillary, and it follows thatw contains the non-vexillary subsequence
wα(1)wα(2)wα(3)wα(4).

If, on the other hand, the first step of the recursion givesFw = Fv thenv = wtrsτir

andv is not vexillary. Assume by induction on the number of steps until the recurrence
branches into multiple terms, thatv contains a non-vexillary subsequence sayvavbvcvd. If
i, r, s /∈ {a, b, c, d} thenwawbwcwd is exactly the same non-vexillary subsequence. So we
can assume the set{a, b, c, d, i, r, s} has at most 6 elements. Let

φ : {1, 2, . . . ,6} → {a, b, c, d, i, r, s} ∪ {n+ 1, n+ 2}

be an order preserving map which sends the numbers 1 through 6 to the 6 smallest distinct
integers in the range. Letw′ = fl(wφ(1)wφ(2) · · ·wφ(6)) andv′ = fl(vφ(1)vφ(2) · · · vφ(6)).
By construction,v′ ∈ B6 contains a non-vexillary subsequence, hencev′ is not vexillary by
Lemma 8. We will use the recursion onFw′ to show thatw′ is not vexillary in B6. From
Lemma 9 it follows that

v′ = w′tφ−1(r )φ−1(s)τφ−1(i )φ−1(r ).
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By Lemma 11,l (v) = l (wtrs)+ 1= l (w) impliesl (v′) = l (w′). Therefore,

Fw′ = Fv′ + possibly other terms.

Regardless of whether there are any other terms in the expansion ofFw′ ,w′ is not vexillary
sincev′ is not vexillary. Again by Lemma 8, this implies thatw′ contains a non-vexillary
subsequence of length 4, sayw′ew

′
fw
′
gw
′
h. Hence,w contains the non-vexillary subsequence

wφ(e)wφ( f )wφ(g)wφ(h). 2

This proves one direction of Theorem 7.

Lemma 13 Given anyw ∈ B∞, if w contains a subsequence of length4 which flattens to
a non-vexillary element in B4, thenw is non-vexillary.

Proof: Assumew is vexillary and letw(1), w(2), . . . , w(k) be the sequence of signed
permutations which arise in expandingFw = Fw(1) = Fw(2) = · · · = Fw(k) using the
recurrence (5). This recurrence terminates when the signed permutationw(k) is strictly
increasing, hencew(k) does not contain any of the patterns in (7). Replacew by the first
w(i ) such thatw(i ) contains a non-vexillary subsequence andw(i+1) does not, and letv =
w(i+1) = wtrsτir .

Saywawbwcwd is a non-vexillary subsequence inw. If i, r, s /∈ {a, b, c, d}, thenvavbvcvd

would be exactly the same non-vexillary subsequence. This contradicts our choice ofv.
So we can assume that the order of the set{a, b, c, d, i, r, s} is less than or equal to 6. As
in the proof of Lemma 12, let

φ : {1, 2, . . . ,6} → {a, b, c, d, i, r, s} ∪ {n+ 1, n+ 2}
be an order preserving map onto the smallest 6 distinct numbers in the range. Letw′ =
fl(wφ(1)wφ(2) · · ·wφ(6)) andv′ = fl(vφ(1)vφ(2) · · · vφ(6)). To simplify notation, we also let
i ′ = φ−1(i ), r ′ = φ−1(r ), ands′ = φ−1(s). By construction,w′ ∈ B6 contains a non-
vexillary subsequence hencew′ is not vexillary by Lemma 8. As in Lemma 12 one can
show

Fw′ = Fv′ + other terms.

Sincew′ contains a non-vexillary subsequence andv′ does not, there must be another term in
Fw′ indexed by a reflectionτ j ′r ′ 6= τi ′r ′ with l (w′tr ′s′τ j ′r ′) = l (w′). One should note thati ′ =
j ′ is possible but thenτi ′r ′ andτ j ′r ′ must be different types of transpositions. Letj = φ( j ′).
By Proposition 4 and the definition of the flatten function, we havel (wtrsτ jr )− l (wtrs) > 0.
By Lemma 10 there exists a reflectionτkr such thatl (wtrsτkr )− l (wtrs) = 1.

We must haveτkr 6= τir sinceτi ′r ′ 6= τ j ′r ′ . Hence,

Fw = Fwtrsτir + Fwtrsτkr + possibly other terms.

This provesw is not vexillary, contrary to our assumption. 2

This completes the proof of Theorem 7.
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The definition of vexillary can be extended using Stanley symmetric functions of type
B andD. These cover the remaining infinite families of root systems. It was shown in [2,
12] that these Stanley symmetric functions are always nonnegative linear combinations of
SchurP-functions. For these cases, we define vexillary by the condition that the Stanley
symmetric function is a single SchurP-function with coefficient 1.

Theorem 14 An elementw ∈ B∞ is vexillary for type B if and only if every subsequence
of length4 in w flattens to a vexillary element of type B in B4. In particular, w is vexillary
if and only if it avoids the following patterns:

21 3̄21̄ 23̄41̄

2̄3̄41̄ 34̄1̄2̄ 3̄4̄12̄

3̄4̄1̄2̄ 4̄12̄3 4̄1̄2̄3

(8)

An elementw ∈ D∞ is vexillary for typeD if and only if every subsequence of length 4
avoids the following patterns:

132 1̄32 321 32̄1 3̄21 3̄21̄

23̄41 2̄341̄ 2̄3̄41 2̄3̄41̄ 3412 34̄12

34̄12̄ 34̄1̄2̄ 3̄412 3̄41̄2 3̄4̄12̄ 3̄4̄1̄2̄

412̄3 4̄12̄3 4̄12̄3 4̄1̄2̄3

(9)

Note, that the patterns that are avoided by vexillary elements of typeD are not all type
D signed permutations but instead include some elements with an odd number of negative
signs. The proof of Theorem 14 is very similar to the proof of Theorem 7 given above. The
analogs of Proposition 2 are given in [1]. Again the proof relies on a computer verification
that these patterns characterize all vexillary elements inB6 andD6.

4. A rule for multiplication

Lascoux and Sch¨utzenberger noticed that the transition equation for Schubert polynomials of
vexillary permutations can be used to multiply Schur functions [18, p. 62]. This provides an
alternative to the Littlewood-Richardson rule. There is an analog of Littlewood-Richardson
rule that can be used to multiply SchurQ-functions [25, 30]. L. Manivel asked if the
transition equations for Schubert polynomials of typesB, C, andD could lead to a rule for
multiplying SchurQ-functions. The answer is “sometimes”. There are only certain shifted
shapesµ which can easily be multiplied by an arbitrary SchurQ-function. Therefore,
we have investigated a different problem. In this section we present an algorithm for
multiplication of a SchurQ-function by a superfied Schur function,φ(sλ).

Let φ be the homomorphism from the ring of symmetric functions onto the subring
generated by odd power sums defined by

φ(pk) =
{

2pk for k odd,

0 for k even.
(10)
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The image of a Schur function under this map,φ(sλ), is called asuperfied Schur function.
The superfied Schur functions appear in connection with the Lie super algebras [24, 29].

The Stanley symmetric functions of typeA andC which are indexed by permutations
are related via the superfication operator.

Proposition 15 ([2, 12, 26]) For v ∈ Sn, we have Fv = φ(Gv).

Let v = [v1, . . . , vd] be any signed permutation. We denote the signed permutation
[1, 2, . . . ,n, v1 + n, . . . , vd + n] by 1n × v. Also, if w = [w1, . . . , wn] is another signed
permutation, letw × v be [w1, . . . , wn, v1+ n, . . . , vd + n] ∈ Bn+d.

Lemma 16 For v ∈ S∞ andw ∈ Bn we have

FwFv = FwF1n×v = Fw×v. (11)

Proof: From (2), whenv ∈ S∞, Fv is equal toF1n×v sincea1a2 · · ·ap ∈ R(v) if and only if
(a1+n)(a2+n) · · · (ap+n)∈ R(1n×v). The reduced words forw×v are all shuffles of a
reduced word forwwith a reduced word for 1n×v. It remains to show that the monomials in
Fv×w are exactly the product of monomials inFw andF1n×v counted with their coefficients.

Let a = a1a2 · · ·ap ∈ R(1n × v) andi = i1i2 · · · i p be an admissible sequence ofa. We
call (a, i) an admissible pair of 1n × v. Similarly, let(b, j) be an admissible pair ofw. We
now form an admissible pair(c, k) of w × v. Let k = k1k2 · · · kp+q be a rearrangement of
ij in weakly increasing order. To constructc, consider a constant subsequenceke = ke+1 =
· · · = k f in k with ke−1< ke andk f < k f+1. If this subsequence comes entirely fromi
(respectivelyj ) the corresponding part of the reduced wordc is made up entirely of the
corresponding part ofa (respectivelyb). If it contains numbers from bothi andj , then there
are two choices forcece+1 · · · cf :

ar ar+1 · · ·asbtbt+1 · · ·buas+1as+2 · · ·az

or

ar ar+1 · · ·as−1btbt+1 · · ·buasas+1as+2 · · ·az

whereas is the smallest number inar ar+1 · · ·au. One can check thatk is an admissible se-
quence for all possible choices ofc described above. Furthermore, each nonempty constant
subsequenceke · · · k f contributes a factor to the coefficient ofxk1xk2 · · · xkp+q . Namely, the
factor is 2 if the sequence comes entirely fromi or j , and if the sequence comes from both
we get a contribution of 2 for each of the two reduced subwords above so the factor is 4.
Therefore, the sum of the coefficients ofxk1xk2 · · · xkp+q for k and all possible choices of
c will be 2α2β4γ whereα (andβ) is the number of constant sequences only in|i| (in |j |
respectively), andγ is the number of constant sequences from both. Clearly, 2α2β4γ equals
2|i|2|j | which is the coefficient of the product corresponding to the admissible pairs(a, i)
and(b, j). 2
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The algorithm for multiplyingFwFv given above will not carry over for arbitrary ele-
ments ofB∞ becauseFv = F1n×v if and only if v ∈ S∞. However, from the algorithm and
Proposition 15 we have the following corollary.

Corollary 17 Letw ∈ B∞ such that Fw = Qµ, and letv ∈ S∞ such that Gv = sλ. Then

Qµ · φ(sλ) = Fw×v (12)

and Fw×v can be determined by the recursive formula in Proposition2.

Note, that D. Worley has shown thatQµ ·φ(sλ) is equal to a certain skew SchurQ-
function [29, 7.11].

In the special case whenFv = φ(sλ) is a single SchurQ-function, sayQν , Corollary 17
can be used to multiplyQµ andQν . This occurs only whenv is a vexillary element of type
C, andν is of the form(m+ l − 1,m+ l − 3,m+ l − 5, . . . ,m− l + 1) for some positive
integersm≥ l [14].

5. The shape of a signed permutation

Given a vexillary elementw, for which straight shapeλ doesGw = sλ if w ∈ S∞? For
which shifted shapeµ doesFw = Qµ if w ∈ B∞? Forw ∈ S∞ there are several ways to
determine this shape: the transition equation [18, p. 52], inserting a single reduced word
using the Edelman-Greene correspondence [6], or by rearranging the code in decreasing
order [23]. For a vexillary element of typeC one can find the shapeµ for which Fw = Qµ

by using the recursive formula (5) or by using the Kra´skiewicz insertion [10] or Haiman
procedures [9] on a single reduced word.

Definition 18 Given an elementv of Sn, the code ofv is defined to be the composition
(c1, c2, . . . , cn) whereci = #{1 ≤ j ≤ n : vi > v j }. The shape ofv, denoted byλ(v),
is defined to be the transpose of the partition given by rearranging the code in decreasing
order.

It is well known that ifv is a vexillary permutation ofSn, thenGv = sλ(v). We now
describe a procedure to define the shapeλB(w) of a signed permutationw so that whenw
is vexillary, Fw = QλB(w).

Let w be an element ofBn, not necessarily vexillary. Rearrange the numbers inw in
increasing order and denote this new signed permutation byu. Let v ∈ Sn so thatw = uv.
Note thatl (w) = l (u) + l (v) andu is vexillary with Fu = Qµ whereµ is the strictly
decreasing sequence given by{|ui | : ui < 0} which is the same set as{|wi | : wi < 0}. For
any standard shifted Young tableauU of shapeµ and any standard Young tableauV of
straight shapeλ(v), we form a new standard shifted tableauU ∗ V by jeu de taquin as
follows:

1. EmbedU into the shifted shapeδ = (n, n− 1, . . . ,2, 1).
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2. Obtain a tableauR by filling the remaining boxes ofδ with 1′, 2′, . . . starting from the
rightmost column and in each column from bottom to top.

3. Add |µ| to each entry ofV to obtainS.
4. AppendR on the left side ofS to obtainT .
5. Delete the box containing 1′ in T . If the resulting tableau is not shifted, apply jeu de

taquin to fill in the box. Repeat the procedure for the box containing 2′ and so on until
all the primed numbers are removed.

6. The resulting tableau of shifted shape is denotedU ∗ V .

We illustrate the procedure with an example. Supposew = [3,−2,−4, 1] thenw = uv
whereu is [−4,−2, 1, 3] andv is [4, 2, 1, 3]. Let U = andV = Here,U
has shape(4, 2) andV has shapeλ([4, 2, 1, 3]) = (2, 1, 1). Then, Steps 1 through 4 will
produce the following tableau:

(13)

Deleting the boxes and applying jeu de taquin as in Step 5 gives

(14)

If V is the standard Young tableau with entries filled successively from left to right and
then from top row down to the next, we denote the shape ofU ∗ V by λB(w) and call it the
shape ofw. In the example above,V is of the form described and the result of combining
U andV by jeu de taquin in the example gives the shapeλB([3,−2,−4, 1]) = (6, 3, 1). It
can be verified thatF[3,−2,−4,1] = Q(6,3,1).

Theorem 19 For anyw ∈ Bn, QλB(w) appears in the expansion of Fw with a nonzero
coefficient. In particular, if w is vexillary,

Fw = QλB(w). (15)

Proof: Using the notation from the algorithm above, one sees thatU corresponds to
a reduced worda of u under theBn-Edelman-Greene correspondence (a.k.a. Haiman
correspondance) [9]. AlsoV corresponds to a reduced wordb of v under theAn-Edelman-
Greene correspondence. Thenab is a reduced word ofw. The steps described above give
a sequence of shifted jeu de taquin moves for the Haiman procedures onab. HenceQλB(w)

appears with positive coefficient in the expansion ofFw. If w is vexillary, the resulting
tableauU ∗ V is independent of the choices ofU and V . SinceFw is a single Schur
Q-function, the resulting shapeλB(w) must be that of the SchurQ-function. 2
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6. Open problems

The vexillary permutations inSn have many interesting properties. We would like to explore
the possibility that these properties have analogs for the vexillary elements inBn.

1. Is there a relationship between smooth Schubert varieties inSp(2n)/B, SO(2n)/B or
SO(2n + 1)/B and the corresponding vexillary elements? In particular, does smooth
imply vexillary as in the case ofSn?

2. Is there a way to define flagged SchurQ-functions so that the Schubert polynomial
indexed byw of typeB or C is a flagged SchurQ-functions if and only ifw is vexillary?

3. Are there other possible ways to define vexillary elements inBn so that any of the above
questions can be answered?
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