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Abstract. Let Sn be the symmetric group of permutations π = π1π2 · · ·πn of {1, 2, . . . , n}.
An index i of π is a peak if πi−1 < πi > πi+1, and we let P (π) denote the set of peaks of
π. Given any set S of positive integers, we define PS(n) = {π ∈ Sn : P (π) = S}. Burdzy,
Sagan, and the first author showed that for all fixed subsets of positive integers S and
sufficiently large n we have |PS(n)| = pS(n)2n−|S|−1 for some polynomial pS(x) depending
on S. It is conjectured that the coefficients of pS(x) expanded in a binomial coefficient basis
centered at max(S) are all positive, and we show that this is a consequence of a stronger
conjecture that bounds the modulus of the zeros of pS(x). Our main results give an explicit
formula for peak polynomials in the binomial basis centered at 0, show that all peaks are
zeros of pS(x), and that 0, 1, 2, . . . , ir are zeros of pS(x) for any ir ∈ S if ir+1 − ir is odd.
Additionally, we enumerate |PS(n)| using alternating permutations for all peak sets S.

1. Introduction

Let Sn be the symmetric group of all permutations π = π1π2 . . . πn of [n] := {1, 2, . . . , n}.
An index i of π is a peak if πi−1 < πi > πi+1, and the peak set of π is defined as
P (π) = {i : i is a peak of π}. We are interested in counting the permutations of Sn with
a given peak set, so let us define PS(n) = {π ∈ Sn : P (π) = S}. We say that a set
S = {i1 < i2 < · · · < is} is n-admissible if |PS(n)| 6= 0. Note that we insist the elements
of S be listed in increasing order and that S is n-admissible if and only if 1 < i1, no two ir
are consecutive integers, and is < n. If we make a statement about an admissible set S, we
mean that S is n-admissible for some n, and the statement holds for every n such that S is
n-admissible. Burdzy, Sagan, and the first author recently proved the following result in [3].

Theorem 1.1 ([3, Theorem 3]). If S is a nonempty admissible set and m = max(S), then

|PS(n)| = pS(n)2n−|S|−1

for n ≥ m, where pS(x) is a polynomial of degree m − 1 depending on S such that pS(n) is
an integer for all integral inputs n. If S = ∅, then |PS(n)| = 2n−1, so we can set p∅(n) = 1.

If S is not admissible, then |PS(n)| = 0 for all positive integers n, and one defines the
corresponding polynomial to be pS(x) = 0. Thus, for all finite sets S of positive integers,
pS(x) is a well-defined polynomial, which is called the peak polynomial for S.

In this paper we study properties of peak polynomials such as their expansions into bi-
nomial bases, zeros, and relative values values at nonnegative integers. We also enumerate
permutations with a given peak set using alternating permutations and connect our results to
other recent work about the peak statistic [3, 5, 8, 10]. Our primary motivation comes from
combinatorics, information theory, and probability theory. Peaks sets have been studied for

Date: September 3, 2014.
Support for this work was provided by the National Science Foundation under grants DMS-1062253, and

DMS-1101017, and the University of Washington Mathematics REU 2013 and 2014.
1



decades going back to [11] and used more recently in a probabilistic project concerned with
mass redistribution [2]. Below are the primary results of this paper.

Theorem 1.2. Let S = {i1 < i2 < · · · < is = m} be admissible and nonempty. For
0 ≤ j ≤ m− 1, define the coefficients

dSj = (−1)m−j−1(−2)|S∩(j,∞)|−1pS∩[j](j).

If there exists an index 1 ≤ r ≤ s− 1 such that ir+1− ir is odd, let b = ir for the largest such
r. Then the peak polynomial pS(x) expands in the binomial basis centered at 0 as

pS(x) =
m−1∑
j=b

dSj

(
x

j

)
.

Otherwise, if there are no odd gaps, then

pS(x) =
(
dS0 − (−2)|S|−1

)
+

m−1∑
j=1

dSj

(
x

j

)
.

Observe that by Theorem 1.1, pS(m) = 0 using the fact that PS(m) is empty, but we
may have pS(`) 6= 0 for ` < m even though |PS(`)| = 0. The next two theorems describe
additional zeros of pS(x).

Corollary 1.3. If S = {i1 < i2 < · · · < is} and ir+1 − ir is odd for some 1 ≤ r ≤ s − 1,
then 0, 1, 2, . . . , ir are zeros of pS(x).

Theorem 1.4. We have pS(i) = 0 for all i ∈ S.

In [3] they conjecture that the coefficients of any peak polynomial are nonnegative integers
in the shifted binomial basis

(
x−m
j

)
, where m is the maximum value in the corresponding

peak set. We refer to this as the “positivity conjecture”, and we show in this paper that it
is a consequence of the following conjecture. These two conjectures motivated our research,
because they suggest that we look at the zeros of peak polynomials.

Conjecture 1.5. The complex zeros of pS(z) lie in {z ∈ C : |z| ≤ m and Re(z) ≥ −3} if S
is admissible.

The paper is organized as follows. Section 2 covers the background material on peak poly-
nomials and the calculus of finite differences. We formally recall the positivity conjecture
from [3]. In Section 3 we prove that Conjecture 1.5 implies the positivity conjecture. Sec-
tion 4 proves Theorems 1.2, 1.3, 1.4, and identifies some special peak polynomials. Section 5
demonstrates some behaviors of peak polynomials evaluated at nonnegative integers and
patterns in the table of forward differences of pS(x). Section 6 develops a new method for
counting the number of permutations with a given peak set using alternating permutations
and the inclusion-exclusion principle. In Section 7 we relate our work to other recent results
about permutations with a given peak set. We conclude with several conjectures suggested
by this investigation.

2. Background

In this section we state results from [3] that are used throughout this paper. Additionally,
we discuss the calculus of finite differences, specifically forward differences, and the positivity
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conjecture from [3]. Let S be a nonempty admissible set of constants and m = max(S)
throughout the section.

Corollary 2.1 ([3, Corollary 4]). We have

pS(x) = pS1(m− 1)

(
x

m− 1

)
− 2pS1(x)− pS2(x),

where S1 = S \ {m} and S2 = S1 ∪ {m− 1}.
Theorem 2.2 ([3, Theorem 6]). If S = {m}, then

pS(x) =

(
x− 1

m− 1

)
− 1.

In the calculus of finite differences we define the forward difference operator ∆ to be
(∆f)(x) = f(x+1)−f(x). Higher order differences are given by (∆nf)(x) = (∆n−1f)(x+ 1)−
(∆n−1f)(x). We use the definition of the Newton interpolating polynomial to expand pS(x)
in the binomial basis centered at k as

pS(x) =
m∑
j=0

(∆jpS)(k)

(
x− k
j

)
.

Notice its similarity to Taylor’s theorem. Below is an example of the forward differences of
p{2,6,10}(x). The k-th column in the table is the basis vector for the expansion of p{2,6,10}(x)
in the binomial basis centered at k. We consider these expansions centered at both 0 and m
in this paper.

j, k 0 1 2 3 4 5 6 7 8 9 10
0 -8 -4 0 2 4 6 0 -18 -72 -196 0
1 4 4 2 2 2 -6 -18 -54 -124 196 3094
2 0 -2 0 0 -8 -12 -36 -70 320 2898 12376
3 -2 2 0 -8 -4 -24 -34 390 2578 9478 26564
4 4 -2 -8 4 -20 -10 424 2188 6900 17086 36376
5 -6 -6 12 -24 10 434 1764 4712 10186 19290 33324
6 0 18 -36 34 424 1330 2948 5474 9104 14034 20460
7 18 -54 70 390 906 1618 2526 3630 4930 6426 8118
8 -72 124 320 516 712 908 1104 1300 1496 1692 1888
9 196 196 196 196 196 196 196 196 196 196 196
10 0 0 0 0 0 0 0 0 0 0 0

Table 1. Forward differences of p{2,6,10}(x)

We know from Theorem 1.1 that (∆0pS)(m) = 0, (∆m−1pS)(k) is a positive integer, and
(∆jpS)(k) = 0 for all k ∈ Z and j ≥ m. Burdzy, Sagan, and the first author proposed the
following positivity conjecture in [3].

Conjecture 2.3 ([3, Conjecture 14]). Each coefficient (∆jpS)(m) is a positive integer for
1 ≤ j ≤ m− 1 and all admissible sets S.

It follows from Stanley’s text [13, Corollary 1.9.3] that pS(n) is an integer for all integral
n if and only if the coefficients in the expansion of pS(n) in a binomial basis are integral, so
we only need to prove that (∆jpS)(m) is positive for 1 ≤ j ≤ m− 1.
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3. An approach to the positivity conjecture

The following lemmas form a chain of arguments that proves that the positivity conjecture
is a consequence of Conjecture 1.5. We write p(x) or p(z) when we are discussing properties
of all polynomials, and we use pS(x) when we are discussing peak polynomials in particular.

Lemma 3.1. If p(z) does not have a complex zero with real part greater than m, then
p′(z), p′′(z), . . . , p(m−1)(z) do not have a complex zero with real part greater m, and thus, no
real zero greater than m.

Proof. We use the Gauss–Lucas theorem, which states that if p(z) is a (nonconstant) polyno-
mial with complex coefficients, then all the zeros of p′(z) belong to the convex hull of the set of
zeros of p(z). By assumption all of the zeros of p(z) lie in the half-plane {z ∈ C : Re(z) ≤ m},
so then by the Gauss–Lucas theorem, all of the zeros of p′(z) also lie in this half-plane. Re-
peating this argument, we see that p′(z), p′′(z), . . . , p(m−1)(z) do not have a complex zero
with real part greater than m and thus no real zero greater than m. �

Lemma 3.2. If S is admissible and none of pS(x), p′S(x), p′′S(x), . . . , p
(m−1)
S (x) have a real

zero greater than m, then pS(x), p′S(x), . . . , p
(m−1)
S (x) are all positive for x > m.

Proof. Since S is admissible, pS(m+ 1) is a positive integer. If pS(x) is nonpositive for some
x0 > m, then pS(x) has a zero greater than m by the intermediate value theorem, which
contradicts the assumption. Therefore pS(x) is positive for x > m, so its leading coefficient

is positive. It follows that the leading coefficients of p′S(x), p′′S(x), . . . , p
(m−1)
S (x) are also

positive, so all of the derivatives of pS(x) are eventually positive. Again by the intermediate

value theorem, the derivatives p′S(x), p′′S(x), . . . , p
(m−1)
S (x) are all positive for x > m. �

Lemma 3.3. If p(x) is a polynomial of degree m − 1 and p′(x), p′′(x), . . . , p(m−1)(x) are
positive for x > m, then all of the forward differences (∆p)(m), (∆2p)(m), . . . , (∆m−1p)(m)
are positive.

Proof. Proposition 17 of [9] states that if f(x) is n times differentiable on [m,m + n], then
there exists ξ ∈ (m,m + n) such that (∆nf)(x) = f (n)(ξ). Polynomials are infinitely dif-
ferentiable, so there exists ξ ∈ (m,m + n) such that (∆np)(m) = p(n)(ξ). By assumption,
p′(x), p′′(x), . . . , p(m−1)(x) are positive for x > m, so p′(ξ), p′′(ξ), . . . , p(m−1)(ξ) are positive
for all ξ > m. Therefore, (∆p)(m), (∆2p)(m), . . . , (∆m−1p)(m) are positive. �

Theorem 3.4. If S is admissible and pS(n) has no zero whose real part is greater than m,
then each coefficient (∆jpS)(m) is positive for 1 ≤ j ≤ m− 1.

Proof. The proof is a consequence of Lemma 3.1, Lemma 3.2, and Lemma 3.3. �

It is clear that Conjecture 1.5 satisfies the hypothesis of Theorem 3.4, so we can prove
Conjecture 2.3 if we can appropriately bound the zeros of pS(x). It is worth noting that we
have checked the zeros of the peak polynomials for all admissible sets S with max(S) ≤ 15
in [7], and they agree with Conjecture 1.5.

4. Zeros of peak polynomials

Our main theorems from the introduction are proved here in Subsection 4.1. In particular,
we give an explicit formula for pS(x) in the binomial basis centered at 0. In Subsection 4.2
we look at peak polynomials with only integral zeros, and the results in Subsection 4.3 show
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that if S has a gap of 3, then pS(x) is independent of the peaks to the left of this gap up to a
constant. All of the results in this section assume that S is admissible, though not explicitly
stated in the hypothesis.

4.1. Main results. The following recurrence relation is very efficient for computation and
is the foundation of every result in this section.

Lemma 4.1. If S = {i1 < i2 < · · · < is = m < m+ k} and k ≥ 2, then

pS(x) = −2pS1(x)χ(k even) +
k−1∑
j=1

(−1)k−1−jpS1(m+ j)

(
x

m+ j

)
.

Proof. We induct on k and use Corollary 2.1. In the base case k = 2, and

pS(x) = −2pS1(x) + pS1(m+ 1)

(
x

m+ 1

)
.

By induction,

pS(x) = pS1(m+ k − 1)

(
x

m+ k − 1

)
− 2pS1(x)− pS2(x)

= pS1(m+ k − 1)

(
x

m+ k − 1

)
− 2pS1(x)

−

[
−2pS1(x)χ(k − 1 even) +

k−2∑
j=1

(−1)k−2−jpS1(m+ j)

(
x

m+ j

)]

= −2pS1(x)χ(k even) +
k−1∑
j=1

(−1)k−1−jpS1(m+ j)

(
x

m+ j

)
. �

Corollary 4.2. If S = {i1 < i2 < · · · < is = m < m+ k} and k ≥ 2, then

|PS(n)| = −χ(k even)|PS1(n)|+
k−1∑
j=1

(−1)k−1−j
(

n

m+ j

)
|PS1(m+ j)| · |P∅(n− (m+ j))|.

Proof. Apply Theorem 1.1 to Lemma 4.1. �

We can interpret Corollary 4.2 combinatorially. Choose m+ k − 1 of the n elements and
arrange them such that their peak set is S1. Arrange the remaining n− (m+k−1) elements
so that there are no peaks, and append this sequence to the previous one. In the combined
sequence there is either a peak at m+ k,m+ k − 1, or no peak after m. Since m+ k ∈ S,

|PS(n)| =
(

n

m+ k − 1

)
|PS1(m+ k − 1)| · |P∅(n− (m+ k − 1))| − |PS2(n)| − |PS1(n)|.

We repeat this procedure for |PS2(n)| to count all the permutations whose peak set is
S1 ∪ {m+ k − 1}, but this also counts permutations whose peak set is S1 ∪ {m + k − 2}
and S1. We repeat this process until we count permutations whose peak set is S1 ∪{m+ 1},
but this peak set is inadmissible and terminates the procedure. Notice that |PS1(n)| tele-
scopes because it is included in each iteration with an alternating sign.

We now present the proof of an explicit formula for peak polynomials with nonempty peak
sets in the binomial basis centered at 0. The results about zeros due to odd gaps and peaks
follow.
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Proof of Theorem 1.2. The proof follows by iterating Lemma 4.1. In the case that there no
odd gaps, we have

pS(x) = (−2)|S|−1
[(

x− 1

i1 − 1

)
− 1

]
+

m−1∑
j=i1

dSj

(
x

j

)
,

and then use Vandermonde’s identity to shift the p{i1}(x) term to the binomial basis centered
at 0. �

Corollary 4.3. If S = {i1 < i2 < · · · < is} and ir+1 − ir is odd for some 1 ≤ r ≤ s − 1,
then 0, 1, . . . , ir are zeros of pS(x).

Proof. The proof follows from Theorem 1.2. �

Corollary 4.4. If S contains an odd peak, then pS(0) = 0. Otherwise, pS(0) = (−2)|S|.

Proof. The proof follows from Theorem 1.2. �

Theorem 4.5. We have pS(i) = 0 for i ∈ S.

Proof. We induct on |S| for all nonempty admissible sets S. In the base case |S| = 1, and
p{m}(m) = 0 by Theorem 2.2. In the inductive step, let m = max(S). If i ∈ S1, then
pS1(i) = 0 by the induction hypothesis, so pS(i) = 0 by Lemma 4.1. We also know that
pS(m) = 0 by Theorem 1.1, so pS(i) = 0 for all i ∈ S. �

4.2. Peak polynomials with only integral zeros. All of the peak polynomials in this
subsection are completely factored and have all nonnegative integral zeros. As a result, they
satisfy Conjecture 2.3 by Theorem 3.4, because we have bounded the real part of their zeros
by max(S). In the next two lemmas, the leading coefficient is all that is recursively defined,
and it depends solely on the structure of {i1 < i2 < · · · < is}. In Conjecture 7.5 we classify
all the peak polynomials with only integral zeros.

Lemma 4.6. If S = {i1 < i2 < · · · < is = m < m+ 3}, then

pS(x) =
pS1(m+ 1)

2(m+ 1)!
(x− (m+ 3))

m∏
j=0

(x− j).

Proof. Using Lemma 4.1, we see that

pS(x) =
2∑

j=1

(−1)2−jpS1(m+ j)

(
x

m+ j

)

=

∏m
j=0(x− j)
(m+ 1)!

[
pS1(m+ 2)

m+ 2

(
x−

(
m+ 1 +

pS1(m+ 1)(m+ 2)

pS1(m+ 2)

))]
,

but m+ 3 is also a zero of pS(x) by Theorem 4.5. Equating the two roots, we have

pS1(m+ 2) =
(m+ 2)pS1(m+ 1)

2
,

so then

pS(x) =
pS1(m+ 1)

2(m+ 1)!
(x− (m+ 3))

m∏
j=0

(x− j). �
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Lemma 4.7. If S = {i1 < i2 < · · · < is = m < m+ 3 < m+ 5}, then

pS(x) =
pS\{m+3,m+5}(m+ 1)

12(m+ 1)!
(x− (m+ 5))(x− (m+ 3))(x− (m− 2))

m∏
j=0

(x− j).

Proof. The proof follows from Corollary 2.1 and Lemma 4.6. �

The next two corollaries show how pS(x) grows from x0 to x0 + 1 for any x0 ∈ R, and they
demonstrate how the zeros shift when translating pS(x) to pS(x+ 1).

Corollary 4.8. If S = {i1 < i2 < · · · < is = m < m+ 3}, then

pS(x+ 1) = lim
t→x

(t+ 1)(t− (m+ 2))

(t−m)(t− (m+ 3))
pS(t).

Proof. Write pS(x+ 1)/pS(x) using Lemma 4.6 and apply Theorem 4.5. �

Corollary 4.9. If S = {i1 < i2 < · · · < is = m < m+ 3 < m+ 5}, then

pS(x+ 1) = lim
t→x

(t+ 1)(t− (m− 3))(t− (m+ 2))(t− (m+ 4))

(t− (m− 2))(t−m)(t− (m+ 3))(t− (m+ 5))
pS(t).

Proof. Write pS(x+ 1)/pS(x) using Lemma 4.7 and apply Theorem 4.5. �

We now derive closed-form formulas for pS(x) when S = {m,m + 3, . . . ,m + 3k} and
S = {m,m+ 3, . . . ,m+ 3k,m+ 3k + 2} for k ≥ 1. These formulas are direct consequences
of Lemma 4.6 and Lemma 4.7

Corollary 4.10. If S = {m,m+ 3, . . . ,m+ 3k} for k ≥ 1, then

pS(x) =
(m− 1)(x− (m+ 3k))

2(m+ 1)!(12k−1)

m+3(k−1)∏
j=0

(x− j).

Proof. We induct on k. In the base case, k = 1 and S = {m,m+ 3}. Using Lemma 4.6 and
Theorem 2.2, we have

p{m,m+3}(x) =
p{m}(m+ 1)

2(m+ 1)!
(x− (m+ 3))

m∏
j=0

(x− j)

=
(m− 1)(x− (m+ 3))

2(m+ 1)!

m∏
j=0

(x− j).

In the inductive step, S = {m,m + 3, . . . ,m + 3k}. We use Lemma 4.6 again, because
pS1(m+ 3k − 2) by the inductive hypothesis, and it follows that

pS(x) =
pS1(m+ 3k − 2)

2(m+ 3k − 2)!
(x− (m+ 3k))

m+3(k−1)∏
j=0

(x− j)

=
(m− 1)(m+ 3k − 2)!

2(m+ 1)!(12k−2)3!

(x− (m+ 3k))

2(m+ 3k − 2)!

m+3(k−1)∏
j=0

(x− j)


=

(m− 1)(x− (m+ 3k))

2(m+ 1)!(12k−1)

m+3(k−1)∏
j=0

(x− j). �
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Corollary 4.11. If S = {m,m+ 3, . . . ,m+ 3k,m+ 3k + 2} for k ≥ 1, then

pS(x) =
(m− 1)(x− (m+ 3k + 2))(x− (m+ 3k))(x− (m+ 3k − 5))

(m+ 1)!(12k)

m+3(k−1)∏
j=0

(x− j).

Proof. The proof follows from Lemma 4.7 and Theorem 4.10. �

4.3. Gap of three independence. The following theorem shows that if S has a gap of
three anywhere, then pS(x) is independent of the peaks to the left of that gap up to a
constant. Furthermore, the complex zeros of pS(x) depend only on the peaks to the right of
the gap of three and where this gap occurs. Corollaries of this result follow.

Theorem 4.12. Let SL = {i1 < i2 < · · · < i` = m} and SR = {2 < j2 < · · · < jr}. If
S = {i1 < i2 < · · · < m < m+ 3 < (m+ 1) + j2 < · · · < (m+ 1) + jr}, then

pS(x) =
pSL

(m+ 1)

2(m+ 1)!
pSR

(x− (m+ 1))
m∏
k=0

(x− k).

Proof. We first prove the corresponding statement in terms of permutations with a given
peak set. Fix a positive integer n > (m+ 1) + jr. Choose m+ 1 of the n elements in [n], and
arrange them so that their peak set is SL. Now arrange the remaining n− (m+ 1) elements
so that their peak set is SR. This construction produces all of the permutations in Sn whose
peak set is S without repetition, because m + 1 and m + 2 cannot be peaks since m and
m+ 3 are. Thus we have

(1) |PS(n)| =
(

n

m+ 1

)
|PSL

(m+ 1)| · |PSR
(n− (m+ 1))|.

Using Theorem 1.1,

pS(n)2n−|S|−1 =

(
n

m+ 1

)
pSL

(m+ 1)2(m+1)−|SL|−1pSR
(n− (m+ 1))2(n−(m+1))−|SR|−1.

and since |S| = |SL|+ |SR|, we have

pS(n) =
pSL

(m+ 1)

2(m+ 1)!
pSR

(n− (m+ 1))
m∏
k=0

(n− k).

This proves the theorem because we have shown that the polynomial on the right and the
left agree on an infinite number of values. �

From the factorization in (1), we clearly see that 0, 1, 2, . . . ,m are zeros of pS(z), and
the zeros of pSR

(z) are zeros of pS(z) when translated to the right by m+ 1 in the complex
plane. Note that deg(pS(x)) = m+ jr because max(S) = (m+1)+jr, but we also see this by
counting the m+ 1 leftmost integer roots and then the jr− 1 roots of pSR

(x). Theorem 4.12
also implies Lemma 4.6 when SR = {2} for all SL because p{2}(x) = x − 2. The plots and
corollaries below demonstrate this independence.
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Figure 1. Zeros of p{2,10}(z) Figure 2. Zeros of p{4,7,15}(z)

Corollary 4.13. Let SL = {i1 < i2 < · · · < i` = m}, SR = {j1 = 2 < j2 < · · · < jr}, and
S = {i1 < i2 < · · · < m < m + 3 < (m + 1) + j2 < · · · < (m + 1) + jr}. If SR has no zero
with real part greater than jr, then pS(x) has no zero with real part greater than max(S).

Proof. The proof follows from Theorem 4.12. �

If we want to verify that Conjecture 2.3 holds for a peak set S with a gap of three, then
it suffices to check that it holds for SR by Corollary 4.13.

Corollary 4.14. Let SL = {i1 < i2 < · · · < i` = m}, SR = {j1 = 2 < j2 < · · · < jr},
and S = {i1 < i2 < · · · < m < m + 3 < (m + 1) + j2 < · · · < (m + 1) + jr}. If we define
S + 1 = {i+ 1 : i ∈ S}, then

pS+1(x) = C(S)pS(x− 1)x,

where

C(S) =
pSL+1(m+ 2)

(m+ 2)pSL
(m+ 1)

is a constant depending only on S.

Proof. Using Theorem 4.12, we see that

pS(x− 1) =
pSL

(m+ 1)

2(m+ 1)!
pSR

(x− (m+ 2))
m∏
k=0

(x− (k + 1))

and

pS+1(x) =
pSL+1(m+ 2)

2(m+ 2)!
pSR

(x− (m+ 2))
m+1∏
k=0

(x− k).

Solving for pS+1(x), we have

pS+1(x) = C(S)pS(x− 1)x,

where

C(S) =
pSL+1(m+ 2)

(m+ 2)pSL
(m+ 1)

depends only on S. �
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Observe that Corollary 4.14 shifts all of the zeros of pS(z) in the complex plane to the
right by one and then picks up a new root at 0 since C(S) is a constant. The plots below
illustrate this behavior.

Figure 3. Zeros of p{3,5,8,14}(z) Figure 4. Zeros of p{4,6,9,15}(z)

5. Evaluating pS(x) at nonnegative integers

In the previous section we identified integral zeros of pS(x), so now we will try to un-
derstand the behavior of pS(x) at nonnegative integers j when pS(j) 6= 0. We prove that
there is a curious symmetry between column and row 0 in the table of forward differences
of pS(x) (see Table 2), and that the nonzero values of |pS(j)| are weakly increasing for
j ∈ [max(S) − 1] when min(S) ≥ 4. Again, assume that S is a nonempty admissible set in
the following hypotheses.

Lemma 5.1. Let S 6= ∅ and m = max(S). For k ≥ 0, we have

k−1∑
j=1

(−1)k−1−jpS(m+ j)

(
m+ k

m+ j

)
= 2pS(m+ k)χ(k even).

Proof. Let T = S ∪ {m + k}. We know from Theorem 1.1 that pT (m + k) = 0, and then
apply Lemma 4.1. �

Lemma 5.2. For S = {i1 < i2 < · · · < is = m < m + k} and ` ∈ [k − 1], we have
pS(m+ `) = −pS1(m+ `).

Proof. Using Lemma 4.1 and Lemma 5.1, observe that

pS(m+ `) = −2pS1(m+ `)χ(k even) +
k−1∑
j=1

(−1)k−1−jpS1(m+ j)

(
m+ `

m+ j

)

= −2pS1(m+ `)χ(k even) + (−1)k−`
`−1∑
j=1

(−1)`−1−jpS1(m+ j)

(
m+ `

m+ j

)
+ (−1)k−1−`pS1(m+ `)

= −2pS1(m+ `)χ(k even) + (−1)k−`2pS1(m+ `)χ(` even) + (−1)k−1−`pS1(m+ `).

Considering all possible parities of k and `, we see that pS(m+ `) = −pS1(m+ `). �
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Theorem 5.3. Let S 6= ∅ and m = max(S). If j ∈ {0, 1, . . . ,m}, then

(∆jpS)(0) = (−1)m+jpS(j).

Proof. We induct on |S|. In the base case |S| = 1, and we use Lemma 2.2 and Vandermonde’s
identity to observe

p{m}(x) =

[
m−1∑
j=0

(
−1

m− 1− j

)(
x

j

)]
− 1.

It follows that,

(∆jp{m})(0) =


(−1)m−1 − 1 if j = 0,

(−1)m−1−j if j ∈ [m− 1],

0 if j = m.

Similarly, we use Lemma 2.2 to evaluate

(−1)m+jpS(j) = (−1)m+j

[(
j − 1

m− 1

)
− 1

]

=


(−1)m+1 − 1 if j = 0,

(−1)m+j+1 if j ∈ [m− 1],

0 if j = m,

which proves the base case.
In the inductive step |S| ≥ 2, so let S = {i1 < i2 < · · · < is = m < m + k} for k ≥ 2.

Using Lemma 4.1 and expanding pS1(x) in the binomial basis centered at 0,

pS(x) = −2pS1(x)χ(k even) +
m+k−1∑
j=m+1

(−1)k−1−(j−m)pS1(j)

(
x

j

)

= −2

[
m∑
j=0

(∆jpS1)(0)

(
x

j

)]
χ(k even) +

m+k−1∑
j=m+1

(−1)k−1−(j−m)pS1(j)

(
x

j

)
.(2)

Assume the case that j ∈ {0, 1, . . . ,m}. Considering both possible parities of k, we use (2)
and the induction hypothesis to see that

(∆jpS)(0) = −2(∆jpS1)(0)χ(k even)

= −2(−1)m+jpS1(j)χ(k even)

= (−1)(m+k)+jpS(j),

because pS(j) = −2pS1(j)χ(k even) by Lemma 4.1. Now let j ∈ {m+1,m+2, . . . ,m+k−1}.
Using Lemma 5.2 and (2), we have

(∆jpS)(0) = (−1)k−1−(j−m)pS1(j)

= (−1)(m+k)+jpS(j).

Lastly, (∆mpS)(0) = 0 because deg(pS(x)) = m− 1, which completes the proof. �
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For example, if j > 0 is between the largest odd gap and m, then by this symmetry
property and Theorem 1.2 one can observe that

pS(j) = (−1)m+j(∆jpS)(0) = −(−2)|S∩(j,∞)|−1pS∩[j](j).

If S has no odd gaps, then the equation above holds for all j ∈ [m].

Lemma 5.4. If S 6= ∅ and m = max(S), then pS(j) < pS(j + 1) for j ≥ m.

Proof. We prove the result by splitting into two cases. When |S| = 1, we have p{m}(x),
which increases on (m − 1,∞) by Theorem 2.2 and proves our claim. In the second case,
let |S| ≥ 2. We want to show that pS(j) < pS(j + 1), which is equivalent to showing
2|PS(j)| < |PS(j + 1)|, so we need to construct more than twice as many permutations in
Sj+1 with peak set S than there are in Sj. Note that pS(m) = 0 and pS(m+ 1) > 0, so we
need only consider Sj for j ≥ m + 1. First, let π ∈ Sj and append j + 1 to π. This gives
us |PS(j)| permutations in Sj+1. Now construct |PS(j)| different permutations by inserting
j+1 between positions m−1 and m, so that j+1 becomes the final peak. Lastly, place j+1
at the first peak position (reading left to right), j at the next peak position, etc., and then
fill the empty indices from left to right with 1, 2, . . . , j + 1 − |S|, respectively. Each of the
2|PS(n)|+1 constructed permutations is distinct and has peak set S, so pS(j) < pS(j+1). �

Theorem 5.5. Let S = {i1 < i2 < · · · < is = m}. For integers 1 ≤ j < k, we have |pS(j)| ≤
|pS(k)| provided pS(k) 6= 0, except for the case {2} ( S where pS(1) = 2pS(3) = −(−2)|S|−1.

Proof. If |pS(j)| = 0, then the claim is trivially true, so assume that |pS(j)| > 0 which implies
S ∩ (j,∞) has no odd gaps. If S = ∅ or not admissible then the statement holds so assume
S 6= ∅, admissible, and m = max(S). We first consider the cases where j < k < m. We use
these assumptions along with Theorem 1.2 and Corollary 5.3 to observe that

(3) |pS(j)| = 2|S∩(j,∞)|−1|pS∩[j](j)|.
Consider the case pS(j + 1) 6= 0. Then j + 1 6∈ S by Theorem 4.5, and

|pS(j + 1)| = 2|S∩(j+1,∞)|−1|pS∩[j+1](j + 1)|
= 2|S∩(j,∞)|−1|pS∩[j](j + 1)|.

To show that |pS(j)| ≤ |pS(j + 1)| it suffices to show that |pS∩[j](j)| ≤ |pS∩[j](j + 1)|. If
S ∩ [j] = ∅, then we know p∅(x) = 1 from Theorem 1.1. Otherwise, we may use Lemma 5.4
because S 6= ∅ and j ≥ max(S∩ [j]). In both cases, |pS(j)| ≤ |pS(j+1)| when |pS(j+1)| > 0.

Now assume that pS(j + 1) = 0. Combining Theorem 1.1, Corollary 5.3, and the assump-
tion that |pS(j)| > 0, this implies |pS∩[j+1](j + 1)| = 0 which in turn implies j + 1 ∈ S by
Lemma 5.4. Since S is admissible j + 2 6∈ S so pS∩[j+1](j + 2) = pS∩[j+2](j + 2) > 0. By (3)
this implies |pS(j + 2)| > 0. To show that |pS(j)| ≤ |pS(j + 2)|, we will show that

(4) 2|S∩(j,∞)|−1|pS∩[j](j)| ≤ 2|S∩(j+2,∞)|−1|pS∩[j+2](j + 2)|,
assuming j + 1 ∈ S. Let R = S ∩ [j + 2], and R1 = R \ {j + 1}. Using Theorem 1.1, (4) is
true if and only if

(5) 4|PR1(j)| ≤ |PR(j + 2)|.
To prove (5), observe that one can choose any j elements from [j+ 1], arrange them to have
peak set R1 in |PR1(j)| ways, and then append j + 2 and the remaining element to this
sequence in decreasing order. The resulting permutation has peak set R, and doing this in
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all possible ways yields (j + 1)|PR1(j)| distinct permutations in Sj+2. If j + 1 ≥ 4, then
(5) holds so |pS(j)| ≤ |pS(k)| when |pS(j + 1)| = 0. Observe that the exact same argument
proves the theorem for the case m > 3, j = m− 1, and k = m+ 1.

If j+ 1 ∈ {2, 3}, then by (3) we can complete the proof using the fact that p∅(x) = 1, and
by computing the values of p{2}(n) and p{3}(n) for n = 0, 1, 2, 3, 4, we have

S = {2} =⇒ (−2,−1, 0, 1, 2)

and

S = {3} =⇒ (0,−1,−1, 0, 2).

In fact, using that data and Theorem 1.2 we see pS(1) = −(−2)|S|−1 for all nonempty
admissible sets S with no odd gaps and 0 otherwise. Similarly,

pS(2) =


0 if 2 ∈ S or S has an odd gap,

1 if S = ∅,
−(−2)|S|−1 otherwise,

and

pS(3) =


0 if 3 ∈ S or S has an odd gap after 3,

1 if S ⊂ [2],

−(−2)|S|−2 if {2} ( S,

−(−2)|S|−1 otherwise,

which proves the special case of the theorem where the inequality does Not hold. For
completeness,

pS(4) =



0 if 4 ∈ S or S has an odd gap after 4,

1 if S = ∅,
2 if S = {2} or S = {3},
−(−2)|S|−1 if {2, 3} ∩ S = ∅, |S| > 1, and S has no odd gaps,

(−2)|S|−1 otherwise.

For n > 4, the values of |pS(n)| are not typically powers of 2.
Finally, the theorem holds for all remaining cases with m < j < k by Lemma 5.4 and

transitivity. �

The previous proof also implies the following statement.

Corollary 5.6. Let S be a set of positive integers and j be a positive integer such that
pS(j) 6= 0. Let k ≥ j integer. If pS(k) = 0 then k ∈ S.

6. Connections to alternating permutations

In this section we enumerate permutations with a given peak set using alternating per-
mutations and tangent numbers instead of the recurrence given by Lemma 4.1. Alternating
permutations allow us to easily count the number of permutations whose peak set is a super-
set of S, so we combine this idea with the inclusion-exclusion principle to evaluate |PS(n)|.

Assume that S is a nonempty admissible peak set and that m = max(S). Let QS(n) =
{π ∈ Sn : S ⊆ P (π)} be the set of permutations π ∈ Sn whose peak set contains S = {i1 <
i2 < · · · < is}, and let us partition S into runs of alternating substrings. An alternating
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substring is a maximal size subset Ar such that Ar = {ir, ir + 2, . . . , ir + 2(k − 1)} ⊆ S,
where ir − ir−1 ≥ 3 if ir−1 ∈ S, and we call Ar an alternating substring because

πir−1 < πir > πir+1 < πir+2 > · · · < πir+2(k−1) > πir+2(k−1)+1

is an alternating permutation in S2k+1 under an order-preserving map. Alternating permu-
tations have peaks at every even index, and there are E2k+1 of them in S2k+1. The numbers
E2k+1 are the tangent numbers given by the generating function

tanx =
∞∑
k=0

E2k+1

(2k + 1)!
x2k+1

= x+
1

3
x3 +

2

15
x5 +

17

315
x7 + . . .

André proved this result in [1] using a generating function that satisfies a differential equation.
See [12] for more background on alternating permutations.

Now let A(S) be the partition of an admissible set S into maximal alternating substrings.
For example, if S = {2, 5, 9, 11, 19, 21, 23, 26}, then

A(S) = {A1, A2, A3, A5, A8} = {{2}, {5}, {9, 11}, {19, 21, 23}, {26}}.
The following results demonstrate how we can use QS(n) to enumerate permutations with
a given peak set.

Lemma 6.1. For n ≥ m+ 1, we have

|QS(n)| = n!
∏

Ar∈A(S)

E2|Ar|+1

(2 |Ar|+ 1)!
.

Proof. The formula is easily checked in the case S = ∅, so assume S 6= ∅. Assume the
theorem is true by induction for all sets S ′ such that |A(S ′)| < |A(S)|. Say A1 = {i1, i1 +
2, . . . , i1 + 2(k − 1)} ∈ A(S). We count the number of permutations π ∈ Sn such that
A1 ⊆ P (π) by choosing 2k + 1 of the n elements, arranging them such that their peak set is
A1 in E2k+1 ways, then appending any permutation of the remaining n− (2k + 1) elements
arranged to have peak set contained in S ′ = S \ A1. The result now follows by induction.

�

Lemma 6.2. For n ≥ m+ 1, we have

|PS(n)| =
∑
T⊇S

(−1)|T−S||QT (n)|.

Proof. The proof follows the inclusion-exclusion principle. �

Call an index i a free index of peak set S if i ∈ [m + 2] and i is neither a peak nor
adjacent to a peak in S. The following theorem gives us a closed-form expression of tangent
numbers for |P(m+1)| and |P(m+2)| when S has no free indices. Note that if S has no free
indices, then it can be thought of as separate independent alternating permutations that are
concatenated to each other, similar to the independence in Theorem 4.12.

Corollary 6.3. If S has no free indices and k ∈ [2], then

|PS(m+ k)| = (m+ k)!
∏

Ar∈A(S)

E2|Ar|+1

(2|Ar|+ 1)!
.
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Proof. We observe that S is the only admissible superset of S and use Lemma 6.1 and
Lemma 6.2. �

7. Related work and conjectures

In this final section we relate our work to other recent results about permutations with a
given peak set, and we also restate some conjectures that stemmed from our work. Kasraoui
characterized in [10] which peak sets S maximize |PS(n)| for n ≥ 6 and explicitly com-
puted |PS(n)| for such sets S. We compute the maximum |PS(n)| in a different way using
alternating permutations.

Theorem 7.1 ([10, Theorem 1.1, 1.2]). For n ≥ 6, the sets S that maximize |PS(n)| are

S =


{3, 6, 9, . . . } ∩ [n− 1] and {4, 7, 10, . . . } ∩ [n− 1] if n ≡ 0 (mod 3),

{3, 6, 9, . . . , 3s, 3s+ 2, 3s+ 5, . . . } ∩ [n− 1] for 1 ≤ s ≤ bn
3
c if n ≡ 1 (mod 3),

{3, 6, 9, . . . } ∩ [n− 1] if n ≡ 2 (mod 3).

Theorem 7.2 ([10, Theorem 1.2]). Suppose n ≥ 6 and S maximizes |PS(n)|. Set ` = bn
3
c.

Then we have

|PS(n)| =


1
5
32−`n! if n ≡ 0 (mod 3),

2
5
31−`n! if n ≡ 1 (mod 3),

3−`n! if n ≡ 2 (mod 3).

Alternative proof. We work by cases using Theorem 7.1. When n ≡ 0 (mod 3), there is only
one admissible superset of S, which we call T . Using Theorem 6.1 and Lemma 6.2,

|PS(n)| = |QS(n)| − |QT (n)|

= n!

(
1

3

)`−1

− n!

(
1

3

)`−2(
2

15

)
=

1

5
32−`n!,

as desired. We use Corollary 6.3 to prove the cases n ≡ 1, 2 (mod 3), which are simpler
because there are no admissible supersets of S. �

Another new result in [5] shows that the number of permutations with the same peak set
for signed permutations can be enumerated using the peak polynomial pS(x) for unsigned
permutations. Again, we present an alternate proof, and it can be used to reduce many signed
permutation statistic problems to unsigned permutation statistic problems. We denote the
group of signed permutations as Bn.

Theorem 7.3 ([5, Theorem 2.7]). Let |P∗S(n)| be the number of signed permutations π ∈ Bn

with peak set S. We have |P∗S(n)| = pS(n)22n−|S|−1, where pS(x) is the same peak polynomial
used to count unsigned permutations π ∈ Sn with peak set S.

Alternative proof. We naturally partition Bn by the signage of the permutations, which gives
us 2n copies of Sn under an order-preserving map, and then we work in each copy of Sn

separately. For example, B3 = {S+++,S++−,S+−+,S+−−S−++,S−+−,S−−+,S−−−} and
S++− are the permutations of {1, 2,−3}. It follows that |P∗S(n)| = 2n|PS(n)|, so |P∗S(n)| =
pS(n)22n−|S|−1 by Theorem 1.1. �
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Now we restate some conjectures. In [7] we checked Conjecture 7.4 for all admissible
peak sets S where max(S) ≤ 15, and this conjecture implies the truth of Conjecture 2.3,
which we explained in Section 3. We have also shown in Subsection 4.2 that the peak sets
listed in Conjecture 7.5 have only integral zeros, but we have not proven the other direction.
Conjecture 7.6 is an observation that is related to Conjecture 7.4, and we have proved it for
all integral x0 using Lemma 5.2 and Lemma 5.4, but not all real x0.

Conjecture 7.4. The complex zeros of pS(n) lie in {z ∈ C : |z| ≤ m and Re(z) ≥ −3} if S
is admissible.

Conjecture 7.5. If S = {i1 < i2 < · · · < is} is admissible and all of the roots of pS(n) are
real, then all of the roots of pS(n) are integral. Furthermore, pS(n) has all real roots if and
only if S = {2}, S = {2, 4}, S = {3}, S = {3, 5}, S = {i1 < i2 < · · · < is < is + 3}, or
S = {i1 < i2 < · · · < is < is + 3 < is + 5}.

Conjecture 7.6. Let S be admissible and |S| ≥ 2. If pS(x0) = 0 for x0 ∈ R, then
x0 > max(S1) if and only if x0 = max(S).

Question 7.7. What does pS(n) count for n > max(S)?

8. Acknowledgments

We would like to thank Jim Morrow first and foremost for organizing the University of
Washington Mathematics REU for over 25 years. We also would like to thank Ben Braun,
Tom Edwards, Richard Ehrenborg, Noam Elkies, Daniel Hirsbrunner, Jerzy Jaromczyk, Beth
Kelly, and Austin Tran for their discussions with us about various results in this paper.

References
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