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Abstract. Schubert polynomials were introduced by Bernstein et al. and Demazure, and were
extensively developed by Lascoux, Schutzenberger, Macdonald, and others. We give an explicit
combinatorial interpretation of the Schubert polynomial DW in terms of the reduced decompositions
of the permutation w. Using this result, a variation of Schensted's correspondence due to Edelman
and Greene allows one to associate in a natural way a certain set Mw of tableaux with w, each tableau
contributing a single term to Dw. This correspondence leads to many problems and conjectures,
whose interrelation is investigated. In Section 2 we consider permutations with no decreasing
subsequence of length three (or 321-avoiding permutations). We show for such permutations that
Dw is a flag skew Schur function. In Section 3 we use this result to obtain some interesting properties
of the rational function SL/U(1, q, q2, •••). where sL/u denotes a skew Schur function.
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1. A combinatorial description of Schubert polynomials

Schubert polynomials were introduced by Bernstein et al. [3] and Demazure [4] (in
the context of arbitrary root systems) and were extensively developed by Lascoux
and Schutzenberger. A treatment of this work, with much additional material,
appears in [13] and will be our main reference on Schubert polynomials. We will
also use some results from the theory of symmetric functions which can be found
in [14] and [21]. Our main result in this section is a combinatorial interpretation of
Schubert polynomials completely different from an earlier conjecture of Kohnert
[13, (4.20)] and theorem of N. Bergeron [13 (B.1), p. 66]. A different proof of
this result appears in [7]. Moreover, our result can be deduced from work of
Lascoux-Schutzenberger, as shown in [16, after Theorem 2]. In Section 2 we
consider Schubert polynomials Dw when w has no decreasing subsequence of
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length three. Such Schubert polynomials have a number of interesting special
properties; for instance, they are skew flag Schur (or multi-Schur) functions. In
Section 3 we use our results on permutations with no decreasing subsequence of
length three to obtain some new combinatorial properties of the rational function
sL/u(1,q, q2, • • • ) , where sL/u denotes a skew Schur function.

We wish to thank Nantel Bergeron for helpful conversation, and Vic Reiner
for carefully reading the proof of Theorem 1.1.

Let us begin with the definition of the Schubert polynomial DW = D w (x) =
D w ( x 1 , x 2 , • • • , xn-1)> where w is a permutation in the symmetric group Sn. If
/ is a function of x and y (and possibly other variables), define the divided
difference operator dxy by

We also write dr = dXrXr+1. Let si for 1 < i < n - 1 denote the adjacent
transposition si = (i, i + 1) e Sn. For w = w1w2··· wn E Sn (where wi =
w(i)), write

the length or number of inversions of w. A reduced decomposition of w is a
sequence (a1, ..., ap), 1 < ai < n - 1, such that

where p = l(w). (Permutations are multiplied left-to-right, so s1s2 = 231, not
312.) Let W0 denote the permutation n, n-1, ..., 1, i.e., the unique permutation
in Sn of maximum possible length (n2). Let R(w) denote the set of reduced
decompositions of w, and suppose (a1, ..., ap) E R(w). Define the operator
dw = Da1 • • • dap. If a e R(w), then we also say that a is a reduced word. It can be
shown [13, (2.5)] that dw is independent of the choice of reduced decomposition
(a1, ..., ap) and hence is well defined. Finally define

Thus Dw is a homogeneous polynomial of degree l(w) in the variables x1, ..., xn-1.
In particular, DhW0 = xn-11xn-22···xn-1.

It is a by no means obvious fact [13, (4.17)] that the coefficients of Dw are
nonnegative. A basic problem in the theory of Schubert polynomials is to give
a combinatorial interpretation of these coefficients. The conjecture of Kohnert
mentioned above gives a simple, albeit algorithmic, solution to this problem,
while the result of Bergeron gives a more complicated algorithmic solution. We
wish to give a nonalgorithmic solution to this problem.

If a = (a1, . . . ,ap) e R(w), then define a sequence (i1, ..., ip) E Pp (where
P = {1, 2, ...}) to be a-compatible if
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Let K(a) denote the (finite) set of all a-compatible sequences. Also let

THEOREM 1.1. Let w e Sn. Then

Example 1.1. Let w = 2431 E S4. The pairs (a, i) E RK(w) are (1323, 1223) and
(3123, 1123). Hence D2431 = x1x22x3 + x2 1X2X3. There is one further element of
R(w), viz., a = 1232, but K(1232) = 0.

We let Rw denote the polynomial on the right-hand side of Theorem 1.1. We
will prove Theorem 1.1 later in this section. First we will prove two additional
formulas for these polynomials. In the proof, we will use lower-case letters to
denote permutations and letters with tildes over them to denote reduced words for
the corresponding permutation (e.g., w denotes a reduced decomposition of w).

We define a raising operator t on the space of polynomials in x1, x2, ... by

t ( X Y ) = t ( X ) t(Y), and t(X + Y) =t(X)+ t(Y) for polynomials X and Y.
We write tj for t iterated j times. Note that we have the identity t ( d i ( X ) ) =
d i + 1 ( t ( X ) ) . We say that a reduced word v e R(v) of length k is an initial word
of a permutation w if there is a reduced word w for w whose first k entries
are the same as v, or, equivalently, if l(w) = l(v) + l ( v - 1 w) . Note that the
permutation v is defined by v. We say that a word w is descending if wi+1 < wi

for all i. If w is a permutation with w(1) = 1, we write t(w) for the permutation
w2 - 1, . . . , wn - 1 E Sn-1. Similarly, if w = (w1,..., wk) is a reduced word, we
use t(w) to denote the word (w1 + 1, ..., wk + 1), and if wi > 1 for all i, we
use t(w) to denote the word (w1 - 1,. . . ,wk-1). We now prove the following
recursion formula for the Rw:

Proof. Given (w, i) e RK(w) let k be the largest integer for which ik - 1. (If
i1 > 1, let k = 0.) Let v(w, i) consist of the first k entries of w, and let w'(w, i)
consist of the remaining entries of w. Finally, let i'(w, i) consist of those entries
of i which do not equal 1. Then the map
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is a bijection between RK(w) and the set of ordered pairs (v, (w', i')), where
v e R(v) is a descending initial word for w, v(1) = w(1), (w', i') e RK(v - 1 w) ,
and i'1 > 2. Then the map P : (w', i') <-> ( t ( w ' ) , t(i ')) is a bijection between
the set of (w', i') e RK(v - 1 w) with i'1 > 2 and RK(t(v-1w)). Combining these,
we have a bijection C : (W, i) <-> (v, (t(w'), t(i'))) between RK(w) and the set
of ordered triples (v, w", i"), where v E R(v) is a descending initial word for w
with v(1) = w(1) and (w", i") e RK( t ( v - 1 w) ) . The recursion formula (2) is now
established by checking that the term of Rw corresponding to any (w, i) e RK(w)
is the same as the contribution of C(w, i) to the right-hand side. D

Remark. Mark Shimozono points out that formula (7.6) in [13] is (when expanded)
identical to the above recursion formula, except that RW is replaced by Dw. This
gives an inductive proof of Theorem 1.1. However, as Macdonald's proof of
formula (7.6) is rather long, we give our own proof of Theorem 1.1 below.

Our next goal is to give a decomposition formula for the Schubert polynomials
and the polynomials Rw. This will be useful for doing induction in the main proof.

Given permutations v = v1, ..., Vj e Sj and w = w1, .. . , wk E Sk, we let v * w
and v x w denote the permutations v1 + k , . . . , vj + k, w 1 , . . . , Wk E Sj+k and
v1, .. . , Vj, w1 + j, ..., Wk + j E Sj+k, respectively. We then have the following
result.

Block decomposition formula:

Proof. Let Lm denote the longest permutation in Sm. Let v be a reduced word
for v - 1 L j , and let w be a reduced word for w - 1Lk . Then v tjw is a reduced
word for (v * w) - 1 L j + k . Hence

Remark. The block decomposition can be proven in more generality by referring
to N. Bergeron's algorithmic method of finding Schubert polynomials [2]. If the
diagram [13] of a permutation in Sn has block form, where the lower right k x j
block is empty and the upper left (n — k) x (n - j) block is filled with balls (for
some j, k with j + k > n), then the decomposition holds. In this case, v e Sj

is the permutation whose diagram has the same configuration as the upper right
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(n - k) x j block and w e Sk is the permutation whose diagram is the lower left
k x (n - j) block.

In general the same block decomposition holds for the Rw as well. We prove
this only for the special cases w = u * 1. The following formula is the same as
the previous one, except that it concerns the Rw instead of the Dw, and we have
set v = u, j = n and k = 1.

Block decomposition formula:

Proof. We define a bijective map C : RK(u) —> RK(u * 1) which will induce a
bijective map of monomials from Ru into Ru*1 defined by multiplying each term
in Ru by x1 • • • xn.

We can write u * 1 as the product of two permutations, namely,

Note that

Therefore for any u e R(u), we have t(u) • s1 • • • sn e R(u * 1). n

Define C on (u, i) E RK(u) as follows. For each 1 < k < n, let ik1, • • •, ikm

be all of the elements in i equal to k, and set uk = (uk1 ···ukm). Each element
of t(uk) must be larger than k, so 1, ..., k - 1 commute with t(uk). Therefore
w =t(u1) • 1· t(u2) • 2··· t(un) • n e R(u * 1). It is easy to see w has the
compatible sequence j = (1l(u1), 1, 2l(u2), 2, ..., nl(un), n) (i.e., the sequence with
u1 + 1 entries labeled 1, u2 + 1 entries labeled 2, etc). Hence we can define C
by

Conversely, for every w e R(u * 1), w we must contain the subsequence
1, 2 , . . . , n. If j is w-compatible then we can write w as the product of decreasing
sequences ending in 1, 2, ..., n, i.e. w = a1, 1, a2, 2, ..., an, n. Now we define
the inverse of C on (w, j) e RK(u * 1) by
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Note that every element in ak must be strictly larger than k; hence ak commutes
with 1, 2, .. . , k-1. Therefore (a1 , . . . , an)(1, 2, ..., n) e R(u*1), which implies
t(a1, . . . ,an) E R(u). Furthermore, the sequence (1l(a1), 2l(a2), ..., nl(an)) is
compatible with t(a1,... , an) since each t(ak) is decreasing and every element
is greater than or equal to k. Therefore, we have shown that C is a bijective map.

From the definition of C, it is easy to see that if C(u, i) = (w, j), then the
monomial corresponding to (u, i) in Ru will be xi and the monomial corresponding
to (w, j) in Ru*1 will be xj = ( x 1 X 2 • • • xn) • xi D

We now prove Theorem 1.1. We show by induction on n that the theorem
holds for Sn i.e., that Rw = DW for any w e Sn. For S1, this is clear. For the
remainder of the proof, we fix n and assume that the theorem has been proved
for Sn. We will show that the theorem is true in Sn+1. We need the following
lemma.

LEMMA 1.1. Let i > 1; w e Sn+1. Then

Remark. The analogous formula for Schubert polynomials holds for all i. A
proof can be found in [13, p. 45.]

Proof of Lemma. We have the following identities, which are explained below:

Equations (3) and (6) are both applications of the recursion formula for the
Rw. Equation (4) follows from the formula di t = t Di-1. We now prove (5).
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We consider two cases. First, if i is an ascent of w, then i is also an ascent of
v - 1w, so i - 1 is an ascent of t ( v - 1 w ) , which implies that di-1Rt(v-1w)= 0; that
is, every summand is zero, and in this case (5) follows.

On the other hand, suppose that i is a descent of w. Since i > 1, we
know that w(1) = wsi(1), so the conditions v(1) = w(1) and v(1) = wsi(1) are
interchangeable. Recall that for a permutation u E Sn,

Since we are assuming that Theorem 1.1 has been proved for Sn, we can freely
interchange Dw and Rw for w e Sn. We also have the identity Di-1Dtu = D t(usi).
Therefore,

Every v appearing in the right-hand side of (5) also appears on the right-hand
side of (4) since a e wsi implies a • Si E R(w). Hence, to complete the proof
we need to show that for any initial word v of w appearing in the index set on
the right-hand side of (4), i - 1 is a descent of t ( v - 1 w ) if and only if v appears
in the index set on the right-hand side of (5). Let v E R(v) be a descending
initial word for w with v(1) = w(1). First, let's assume that i - 1 is a descent
of t (v - 1 w). Multiplying by Si on the right transposes the elements in positions
i and i + 1 so i is a descent of v-1w implies i is an ascent of v -1ws i. Hence
l(v) + l ( v - 1 w s i ) = l(v) + l ( v - 1 w ) - 1 = l(w) - 1 = l(wsi), so v is a descending
initial word for wsi and appears in the index set on the right-hand side of
(5). On the other hand, if i - 1 is an ascent of t ( v - 1 w ) , similar logic shows
that l(v) + l (v - 1 ws i ) = l(w) + 1, so v does not appear in the index set on the
right-hand side of (5), This completes the proof of (5) and of the lemma. D

We now show that Theorem 1.1 holds for two classes of permutations in Sn+1;
as the union of the two classes is all of Sn+1, this will complete the proof.

PROPOSITION 1.1. If w e Sn+1 and w(1) = 1, then Rw = DW.

Proof. First, we prove the proposition in the special case w(n + 1) = 1. We then
have w = u * 1 for some permutation u.

We now have
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The first of the above equations follows from the block formula for Rw; the
second because Theorem 1.1 is assumed to be true for Sn; and the third by the
block decomposition for Schubert polynomials. This completes the proof of the
special case. But now the proposition follows from the special case, the lemma,
and the remark following the lemma, i.e., we apply a sequence of DiS which
"move" the 1 to its position. D

PROPOSITION 1.2. If w e Sn+1 and w(1) < w(2), then Dw = Rw.

Proof. We proceed by induction on l(w). If l(w) = 0, then w is the identity
permutation and Rw = Dw = 1. Now, let w e Sn+1 and suppose the proposition
has been proven for every permutation in Sn+1 of shorter length than w. If
1 < i < n, then d i(Rw - Dw) = 0 by the lemma, remark, and induction hypothesis.
Hence Rw - Dw is symmetric in the variables x 2 , . . . , xn+1, which implies that it
cannot depend on any of them since neither Rw nor DW can depend on xn+1.
Hence all that remains to be shown is that Rw and Dw have the same coefficient
of Xl(w)

1. But since w(1) < w(2), Dw is symmetric in x1 and x2. Therefore,

From the lemma, we have D2(Rw - Dw) = 0, so

Note that Rw|xi
l(w) = 0 or 1 since there can be at most one decreasing reduced word

for w. If Rw|x2
l(w) = 1 then there exists a decreasing word a = (al(w), ..., a1) E

R(w) such that a1 > 2. Hence (1, 1, ..., 1) is compatible with a also. So

If Rw|x2
l(w) = 0 then no decreasing reduced word for w exists that ends in 2

X2

or higher. There cannot exist a decreasing reduced word ending in 1 when
w(1) < w(2); therefore Rw|x1

l(w) = 0 also. This completes the proof of the

proposition and of Theorem 1.1. D

We now consider an interesting consequence of Theorem 1.1. Given a reduced
decomposition a = (a1, ..., ap), Edelman and Greene [5] describe a variation of
the Robinson-Schensted correspondence which associates with a, a tableau Ta of
some shape L f- p. (An equivalent but less algorithmic description of Ta appears
in [12].) If w e Sn, then the entries of Ta lie in {1, 2, ..., n - 1} and are strictly
increasing in each row and column.

Briefly, the Edelman-Greene correspondence starts with the empty tableau,
and builds up T(a1,...,ap))) by inserting a1, then 02, and so on, stopping after inserting
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ap. We insert ai into the current tableau as follows. We start off by inserting ai

into row 1, using the algorithm described below. We then insert the "bumped"
entry, if any, into row 2, continuing in this manner until there is no "bumped"
entry. We now describe the algorithm for inserting ai into a row R. If ai and
ai + 1 are in R when we try to insert ai, we leave R as it is and insert ai + 1 (the
"bumped" entry) into the next row. Otherwise, we insert ai into R by replacing
the smallest element larger than ai, say Xi, with ai and row inserting xi (the
"bumped" entry) into the next row. If no element in R is larger than ai we add
ai to the right end of R, and nothing is bumped. An example follows the next
definition.

With this definition, we see that if Lj is the shape of T(a1, aj), then C = L° c
L1 c • • • C Lj = L with |Lj| = j. Thus given (a, i) = (a, (i1, ..., ip)) E RK(w),
we can define an "insertion tableau" I'(a, i) analogous to the usual Robinson-
Schensted correspondence, as follows: Start with I'0 := I'(0, 0) = 0. Once
I'j := I'((a1, . . . , aj), (i1, . . . , i j ) ) is defined, let I'j+1 be obtained by placing ij+1

into I'j so that the resulting tableau has the same shape as T(a1,...aj+1). Finally
let I'(a, i) = I'p(a, i), and let I(a, i) be the transpose of I'(a, i).

Example 1.2. Let (a, i) = (3167687, 1135567). Write Tj = T(a1, ,aj). The
tableaux, Tj and I'j are given as follows:
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Hence

It is easy to see from the definition of the Edelman-Greene correspondence
that I(a, i) is a column-strict reverse plane partition (or semistandard tableau,
abbreviated SST), i.e., the rows weakly increase and the columns strictly increase.
If a tableau I has mj parts equal to j, then write xI = xm1

1x
m2

2···. Thus
x I (a , i ) = X j 1 . . . xip, where i = ( i 1 , . . . , ip). We therefore have for each permutation
w a multiset Mw = {I(a, i) : (a, i) E RK(w)} of semistandard tableaux such
that

It is natural to ask about the combinatorial structure of the multiset Mw. In
particular, when does it have a simple direct description avoiding the use of the
Edelman-Greene correspondence?

To be more precise, we recall the definition of a flag (or flagged) skew Schur
function (called a multi-Schur function in [13]). We give the combinatorial
definition as in [23, p. 277]. In [23] there is a "left flag" a and "right flag" 6.
Here we will only have a right flag (which will be denoted by P).

Let X1 C X2 C • • • C Xn be finite sets of variables, say Xi = {x1 , X2, ..., xpi},
with the variables totally ordered by x1 < x2 < • • • < xpn. We call the se-
quence P = (p1, ..., pn) a flag, and write Xp = ( X 1 , . . . , X n ) , the flag alphabet
corresponding to P. Note that P1 < P2 < • • • < Pn. Now let L = (L1, • • •, Ln),
u = (u 1 , . . . ,u n ) be partitions with u c L (i.e., ui < Li for all i). Let A = AL/u(p)
be the set of all semistandard skew tableaux of shape L/u such that the elements
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in row i belong to Xi. Define the flag skew Schur function

For instance, if L = (3, 2), u = (1, 0), X1 = {x1}, X2 = {x1, x2}, then A is
given by

so S L / u (X 1 , X2) = x3
1x2 + x2

1x
2
2. We have the determinantal formula [23, Theo-

rem 3.5] (originally due to Gessel)

where hk(Xi) is the complete symmetric function [14, p. 14] in the variables Xi.

Definition 1.1. Let f = f(x1, x2,...) be a symmetric function (in infinitely many
variables) and P = (p1, ..., Pn) a flag. Define the flag symmetric function f(Xp) by

where f = Z aLsL is the expansion of f in terms of Schur functions.

Note: We have used the notation f(Xp) instead of f ( X p ) to avoid confusion
with flag skew Schur functions. In general, it is false that SL / u (x p ) = SL/u(Xp).
For instance, s22/1(X(1,2)) = x1x2(x1+x2) , while s22/1(X(1,2)) = x2

1x2.
We now define two desirable properties that a Schubert polynomial can have.

Given a permutation w and an integer N > 0, define the permutation 1N x w =
12 • • • N(W 1 + N) • • • (wn + N), and set

(This limit is well defined, and Gw is a symmetric function in the variables
x1, x2, ... In the notation of [19] or [13, p. 101], we have Gw = Fw-1.)

Definition 1.2. (a) A permutation w is patriotic if there exists a flag P for which
Dw = GW(Xp).

(b) Let Gw = ZLEMSL, where L ranges over some multiset M = Mw. (There
exists such a multiset by [13, (7.18)].) We say that the permutation w is heroic
if there exists a flag P such that
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Note that by (7) a heroic permutation is patriotic. We had conjectured the
converse, i.e., every patriotic permutation is heroic. This conjecture was later
proved by V. Reiner (private communication):

PROPOSITION 1.3. (Reiner[16]). Every patriotic permutation is heroic.

Let us note that if there exists a flag P such that

for some multiset N, then N = Mw. This follows from Theorem 1.1 in the
limiting case limn->I 1n x w (which itself is essentially in [13, pp. 101-102]) and
the result of Edelman-Greene [5, §8] that the shapes A of the tableaux Ta, where
a E R(w), are exactly the shapes in Mw. In fact, if A has multiplicity m in Mw,
then exactly mfL of the tableaux {Ta: a e r(w)} have shape L, where fL is the
number of standard young tableaux of shape A. Hence, N C Mw. To see that
Mw C N, let I(L) be the semistandard tableau of shape A with only is in the ith
row. Using the Edelman-Greene correspondence, we can partition R(w) into
Coxeter-Knuth classes, each represented by a row and column strict tableau T.
For each such class, the multiset {I(a, i) : Ta = T} will contain I(L(P)) exactly
once corresponding to the column-word of P (i.e., reading the columns of P
bottom up, left to right). Therefore the multiset of tableaux I(L) appearing in
Mw is stable under limn_I 1n x w.

Examples of permutations which are not patriotic (so not heroic) are w =
215364, w = 231645, w = 21543, and w = 254163. We will see in the next section
(Theorem 2.2) that the first two of these have an alternative nice property which
leads to a simple combinatorial interpretation of Dw, while the first three satisfy
a more general property (Proposition 2.3), for which a simple combinatorial
description still holds.

If u = u1u2 • • • um e Sm, then we say that w = w1w2 • • • wn E Sn is u-avoiding if
there does not exist 1 <i1 < i2 < ••• <im <n such that the following condition
holds for all 1 < j < k < m: wij < Wik if and only if Uj <Uk. In other words, w
has no subsequence in the same relative order as u. For instance, 321-avoiding
means no decreasing subsequence of length three. A permutation is vexillary if
and only if it is 2143-avoiding [13, (1.27)]. It follows from [13, (4.9)] that vexillary
permutations are patriotic (and hence heroic). There are numerous examples of
heroic permutations which are not vexillary, such as 2143.

There is a simple necessary condition for a permutation w to be heroic. Let
a(w) = (a1, . . . ,ap) be that reduced decomposition of w for which the sequence
ap • • • a1 is last in lexicographic order. In other words, ap is the largest descent
of w, then ap-1 is the largest descent of wsap, etc. Let i(w) be that a(w)-
compatible sequence which is last in lexicographic order. (It is easy to see that
K(w(a)) = 0, so i(w) exists.) For instance, if w = 21543, then a(w) = (1,4, 3, 4)
and i(w) = (1, 3, 3, 4).
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Definition 1.3. A permutation w is saturated if the tableau I = I(a(w), i(w)) has
the following two properties:

(a) if /' is obtained from / by increasing an entry of I which is not the last
element of a row, then I' is not semistandard.

(b) Let the last entry of row s be is. Suppose ir < ir-1, and I' is obtained from I
by changing the last entry ir of row r to ir + 1. Then I' is not semistandard.

For instance, if w = 21543 then I is given by

We can increase the 1 to 2 without destroying semistandardness. Hence w is not
saturated. Similarly, let w = 231645. Then / is given by

We have i2 = 2 < i1 = 4. We can replace i2 by 3 without destroying semistan-
dardness. Hence w is not saturated.

There is a simple direct description of the tableau I = I(a(w), i(w)). Let
c(w) = (c 1 (w) , ..., Cn(w)) be the code of w [13, p. 9], i.e.,

Then the kth column of I consists of the entries r1 < r2 < • • • < rt, where
r1, ..., rt are such that crj > k for 1 < j < t. For instance, if w = 4217635 then
c(w) = (3, 1, 0, 3, 2, 0, 0), and one reads off directly that

PROPOSITION 1.4. Every heroic permutation is saturated.

Proof. Let I = I(a(w), i(w)). One easily sees that xI is the "leading term"
of the Schubert polynomial DW, i.e., if we list all monomials appearing in Dw

in lexicographic order, then x1 comes last. Suppose w is heroic, and that
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L = shape(I). Let ir be the last entry in row r of I. Since I e Mw and w is
heroic, we have AL(P) C Mw for some flag P = (P1, . . . , P m ) with Pr > ir.

Now assume that condition (a) of Definition 1.3 fails. Then I' e AL(P) and
xI' follows xI in lexicographic order, a contradiction.

Similarly assume that Definition 1.3(b) fails. Since ir < ir-1 and P is weakly
increasing, we have Pr > ir-1 >ir + 1. Thus again I' E AL(P) and xI' follows xI

in lexicographic order, another contradiction. D

We don't know whether the converse to Proposition 1.4 holds, i.e., whether
every saturated permutation is heroic.

2. 321-avoiding permutations

In this section we consider permutations w that are 321-avoiding, i.e., for no
i < j < k do we have w(i) > w(j) > w(k). In particular, we show that
although 321-avoiding permutations need not be patriotic or heroic, their Schubert
polynomials satisfy an alternative simple combinatorial property: They are flag
skew Schur functions.

First let us consider a certain equivalence relation on the set R(w) of all
reduced decompositions of a permutation w. It is well known [15, 22] that given
any two a, b e R(w), we can convert a to b by successive applications of the
Coxeter relations

If a can be converted to b only using C1, then we call a and b C1-equivalent and
write a ~ b. Clearly ~ is an equivalence relation. For instance, if w = 4132 then
there are two equivalence classes, viz., {2321} and {3231, 3213}.

THEOREM 2.1. Let w e Sn. The following four conditions are equivalent.

(a) w is 321-avoiding.
(b) Any two reduced decompositions of w are C1-equivalent.
(c) Let c(w) = (c1, C2, ..., Cn) be the code of w. Suppose i < j,ci > 0 cj > 0,

and ci+1 = Ci+2 = • • • = cj-1 = 0. Then j — i > ci — cj.
(d) Let D(w) denote the diagram of w, as defined in [13, p. 8]. If (h, i), (j, k) e

D(w) with h < j and k < i, then (j, i) e D(w). (It's always true that
(h, k) E D(w).)

Note: Condition (d) is equivalent to the following: If we reflect D(w) about
a vertical line and remove all empty rows and columns, then we obtain the
diagram of a skew partition or skew shape L/u. The exact embedding of L/u
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in Z x Z is not clear from our above description, so we make it more precise
as follows. Suppose c(w) = (c1, ..., Cn) and { j 1 , . . . , j l } = {j : cj > 0}, with
J1 < • • • < jl. Then L/u is embedded in Z x Z so that the last element of the
kth nonempty row is (k, k — jk). We then have that

Denote the skew shape L/u of (11) by z(w). If ( k , h ) e z(w), then we say
that (k, h) lies in the kth row of z(w). We will also need a certain labeling
w = w(w) : z(w) —> Z, defined by w(k, h) = k — h. (Thus w ( k , h ) = — k ( k , h),
where K denotes content as in [14, Example 3, p. 10] and [21, Definition 15.1].)
It follows that the labels of z (w) decrease by one along rows, increase by one
along columns, and that the last (rightmost) label in row k is just jk.

For instance, let w - 351246798 E S9. Then c(w) = (2, 3, 0, 0, 0, 0, 0, 1, 0),
(j1, j2, j3) = (1) 2, 8), and z(w) (with square (h, k) labeled by h, k) is given by:

The labeling w(w) is given by:

Proof of Theorem 2.1. (a) => (b) Assume (b) is false. Then there is a reduced
decomposition a = (a1,...,ap) E R(w) such that for some j and t we have
at-1 = j, at = j + 1, at+1 = j. Let v = sa 1 ,•••sa t + 1 . Then v(j) > v(j + 1) > v(j + 2).
If we perform a succession of adjacent transpositions each of which increases
the length of the permutation, then we can never change the relative order of
v(j), v(j + 1), v(j + 2). Hence in w = vs a t + 2 • • • s a p , the elements v ( j ) v(j + 1),
v(j + 2) form a decreasing subsequence of length three, contradicting (a).

(b) => (a) Assume (a) is false. Thus w(i) > w(j) > w(k) for some i < j < k.
Regarding j as fixed, we may assume that k is such that j < k and w(k) is
minimized, while i is such that i < j and w(i) is maximized. Thus by a sequence
of adjacent transpositions, each decreasing length, we can reach a permutation
v with v(j - 1) = w(i), v(j) = w(j), v(j + 1) = w(k). Thus v has a reduced
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decomposition (..., j — 1, j, j — 1), and so w has a reduced decomposition
(..., j - 1, j, j - 1, ...), contradicting (b).

(a) => (c) Assume (c) is false, and let i and j satisfy i < j, ci > 0,
Cj > 0, ci+1 = ci+2 = • • • = Cj-1 = 0, but j - i < Cj - Cj. Then in the
word w = w(1)w(2) •••, we have that w(i) appears to the left of Ci elements
u1 < u2 < • • • < uci all less than w(i). Since ci+1 = Ci+2 = • • • = Cj-1 = 0, we
have w(i + 1) = u1, w(i + 2) = u2, ..., w(j - 1) = uj-i-1. Since j — i < ci — Cj

we have w(j) = uj-i+cj. (Note that j - i + Cj < ci so u j - i + C j is defined.) Thus
Uj-i appears to the right of w(j) in w. If w(k) = uj-1, then we have i < j < k
and w(i) > w(j) = uj-i+Cj > w(k) = uj-i, contradicting (a).

(c) => (a) Assume (a) is false. Let i be the largest integer for which there
exists i < j < k with w(i) > w(j) > w(k). Given such i, let j be the smallest
integer for which such i < j < k exists.

If i < r < j then w(i) > w(r), else r < j < k and w(r) > w(j) > w(k),
contradicting the definition of i. If i < r < s and r < j, then w(r) < w(s),
else i < r < s and w(i) > w(r) > w(s), contradicting the definition of j. These
conditions show that ci+1 = Ci+2 = • • • = Cj-1 = 0, while clearly ci > 0 and Cj > 0.

Now since w(i) > w(r) for i < r < j, there are exactly ci - (j - i) values
of s > j for which w(i) > w(s). There are also Cj values of t > j for which
w(j) > w(t). Since w(i) > w(j), every t is also an s. Hence cj < Ci - (j - i),
contradicting (c).

(a) => (d) Assume (d) is false. Thus we have (h, i), (j, k) E D(w) such
that h < j, k < i, and (j, i) E D(w) (and always (h, k) e D(w)). Assume that
such ft, i, j, k are chosen so that i - k is minimized. Since (h, i), (h, k) e D(w),
we have that i and k appear to the right of w(h) in w, and that w(h) > i,
w(h) > k. Since (j, k) e D(w), we have that k appears to the right of w(j), and
that w(j) > k.

Case 1: w(j) > i. Then i cannot appear to the right of w(j) in w, so i appears
to the left of k. Hence w(h), i, k is a decreasing subsequence of w of
length three, contradicting (a).

Case 2: k < w(j) < i. Then (h, w(j)) e D(w), since w(h) > i > w(j) and
j = w - 1 ( w ( j ) ) > h. But then h, w(j), j, k gives a "bad" quadruple with
w(j) — k < i — k, contradicting the minimality of i - k. Hence case 2
cannot occur, so (a) is always false when (d) is false.

(d) => (a) Assume (a) is false. Let h < j < m and w(h) > w(j) > w(m). Let
k = w(m) and i = w(j). Then h < j, k < i, (j, k) E D(w), (h, i) e D(w), but
(j, i) E D(w), contradicting (d) and completing the proof. D

Note: There is a connection between Theorem 2.1 and the Temperley-Lieb
algebra AB,n (over the field K). For the basic properties of this algebra, see [9,
p. 33 and §2.8]. For any B e K*, the algebra AB,n has generators e1 , . . . , en-1
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and relations

It follows easily that AB,n has a k-basis consisting of monomials u1, u2, ... in
the Ei's. Using the above relations we can reduce each monomial Uk to one
of minimal length, up to scalar multiplication. Suppose then each uk is of
minimal length, and say uk = ea1ea2 ···eap. From Theorem 2.1 it is easily seen
that then (a1, a2, . . . , ap) E R(w) for some 321-avoiding w e Sn. Moreover, if
Vn is the set of all monomials of length p equal to a scalar multiple of uk, then
Vu = {eb1,eb2 • • • ebp : (b1, b2, . . . , bp) E R(w)}. Conversely, for any 321-avoiding w
and (a1, . . . , ap) E R(w), the monomial E a 1 • • • Eap is a scalar multiple of some Uj.
Hence if Tn = {w e Sn : w is 321-avoiding}, and a(w) = (a1(w), ..., ap(w)) is
any fixed reduced decomposition of w, then the set { e a 1 (w) · · ·Ea p (w) : w e Tn}
is a K-basis for AB,n. Thus dim AB,n is the number of 321-avoiding w E Sn. It
is in fact well known that this number is the Catalan number Cn = 1

/n+1(
2n

n). In
[9, Proposition 2.8.1] there is a simple combinatorial proof that dim AB,n = Cn.
This proof can be rewritten in terms of the code of 321-avoiding w and yields a
simple direct argument that there are Cn such permutations. (For prior proofs
of this result, see [10, pp. 63-64] [17]. The latter reference gives a bijection
between 321-avoiding w e Sn and 132-avoiding (i.e., dominant) w e Sn.)

The proof based on [9] goes as follows. Suppose c(w) = (c1, ..., cn) and
{j1,• • •,jl} = {j : Cj > 0}, with j1 < • • • < jl. Define a lattice path from (0, 0)
to (n, n) in R x R as follows: Walk horizontally from (0, 0) to (c j 1 + j1 - 1, 0),
then vertically to (sj1 + j1 - 1, j1), then horizontally to (cj2 + J2 - 1, J1), then
vertically to (cj2 + j2 - 1, j2), etc. The last part of the path is a vertical line
from (c j l + jl - 1, jl-1) to (cjl + jl - 1, j l), then (if needed) a horizontal line to
(cj l + jl - 1, n), and finally a vertical line to (n, n). This establishes a bijection
between 321-avoiding permutations in Sn and lattice paths from (0, 0) to (n, n)
with steps (1, 0) and (0, 1) which never rise above the diagonal y = x. Such
paths are standard objects counted by Catalan numbers, as desired.

Let us consider once again the equivalence relation ~ defined earlier on R(w).
Suppose £ is an equivalence class, and let a = (a1, . . . , ap) e E. Define a partial
order Pa on the symbols u1, . . . , up as follows: If i < j and saiSaj = Sajsai (i.e.,
ai = aj ± 1), then let ui < Uj; and let Pa be the transitive and reflexive closure
of these relations. Moreover, we define w = wa : Pa —> Z by w(ui) = aj. The
pair (Pa, w) may be regarded as a labeled poset. For instance, if a = (3, 2, 1, 3)
then (Pa, w) is given in Figure 1.

It is easily seen (and is closely related to work of Cartier-Foata; see [18, Exercise
3.48]) that if also b e E, then (Pa, w) and (Pb, w) are isomorphic as labeled posets,
i.e., there is a poset isomorphism f : Pa —> A such that w(u) = w(f(u)) for all
u € Pa. Moreover, if we associate with a linear extension e = (y1 ,y2 , . . . , yP) of
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Let w be 321-avoiding. We wish to describe (Pw, w) more explicitly. The skew
shape A/u = a(w) c Z x Z has a standard poset structure inherited from Z x Z,
viz., (i, j) < (i', j') in a(w) if i < i' and j < f.

PROPOSITION 2.1. Let w be a 321-avoiding permutation. Then there is an isomor-
phism ( P w , w w ) = (a(w), w(u;)) of labeled posets.

Proof. Consider the reduced decomposition a = (a1, ..., ap) e R(w) which comes
last in lexicographic order, i.e., a1 is as large as possible, then after that 02 is
as large as possible, etc. First note that if ak < ak+1 then ak+1 = ak + 1, since
otherwise we could interchange a,k and ak+1, thus obtaining a lexicographically
later reduced decomposition. Hence o has the form

Figure 1. A labeled poset (Pa,W).

P the sequence w(e) = (w(y1), ..., w(yp)), then we obtain a bijection between
the set L(P) of linear extensions of P and the equivalence class £. For instance,
if (Pa, w) is the labeled poset of Figure 1, then its "labeled linear extensions"
u(e) are (3, 2, 1, 3) and (3, 2, 3, 1), which are just the elements of the class £
containing a.

We may therefore write Pg for Pa and we for wa. When w is 321-avoiding,
then by Theorem 2.1 there is a single class e, and we can write Pw = P£,
Ww = we. Then

Next note that aj1 + 1 < a1, since otherwise we could continually interchange
aj1+i with elements to the left of it until reaching a reduced decomposition
containing the consecutive elements aj1+1, aj1 + 1 + 1, aj,+1. This violates the
condition of Theorem 2.1(b). Similarly aj1+j2+1 < aj1+1, etc., so a1 > aj1+1 >
aj1+j2+1 > aj1+j2+j3+1 > . . .. From this it follows that (Pa, w) is a skew tableau



COMBINATORIAL PROPERTIES OF SCHUBERT POLYNOMIALS 363

with J1 squares in the first column, labeled a1, a1 + 1, ..., aj1-1 from top to
bottom, then j2 squares in the second column, labeled j1 + 1,..., j2 from top to
bottom, etc. the columns are arranged so that the labels in each row increase
by one from right to left.

We must verify that the skew shape Pw coincides with a(w), and that the
labelings ww and w(w) agree. This is a straightforward verification whose details
we omit. D

Proposition 2.1 shows that if w is 321-avoiding, then the labeled poset (PW, w)
has the properties that (a) Pw is a skew shape (namely a(w)), and (b) Pw can
be embedded as a convex subset of Z x Z such that w(i, j) = i - j. The next
result establishes a converse.

PROPOSITION 2.2. Let P be a finite convex subset of Z x Z such that if (i, j) e P
then i > j. Then there is a unique 321-avoiding permutation w such that the labeled
poset (Pw, w) has the property that there is an isomorphism f : P —> Pw satisfying
i - j = w ( f ( i , j)) for all (i, j) e P.

Proof. Regard P as a skew shape in "English notation," so (i, j + 1) is to the
right of (i, j) and (i + 1, j) is below (i, j). Let a1, a2, . . . , ap be the numbers
i - j, as (i, j) ranges over Pw, moving from top to bottom in the first column,
then top to bottom in the second column, etc. Thus a1 , . . . , ap has the form (12),
where the nonempty column lengths are j1, j2,... Moreover, since P is a skew
shape we have a1 > aj1+1 > aj1+j2+1 > .... It's then easy to see (as in the proof
of Proposition 2.1) that (a1 , a2, ..., ap) E R(w) for some permutation w, and that
no application of commuting Coxeter relations can ever create consecutive terms,
k, k+1, k or k +1, k, k+1. Hence by Theorem 2.1, w is 321-avoiding. The proof
of Proposition 2.1 then shows that P = Pw, and that defining u(i, j) = i - j for
(i, j) € P agrees with the labeling uw of PU,. Uniqueness of w is clear since the
labeled poset (Pw, w) determines the reduced decompositions of w and therefore
also w itself. D

We thus have established a one-to-one correspondence between 321-avoiding
permutations w and labeled skew shapes (A/u, w), where the labeling is obtained
from an embedding A/z c Z x Z by the rule w(i, j) = i - j > 0. (Two skew
shapes A/z, ab c Z x Z are regarded as the same if there is an order-preserving
bijection f : y/u —> a/B which preserves labels, i.e., if f ( i , j) = (k, h) then
i - j = k - h. Equivalently, a/B is obtained from A/z by translating by a
"diagonal vector" (m, m).) Clearly we have w e <Sn if and only if every label
i — j is less than n. For instance, there are fourteen 321-avoiding w e S4. The
corresponding fourteen labeled skew shapes are:
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The following corollary to Proposition 2.1 will be significantly generalized in
Corollary 2.4.

COROLLARY 2.1. Let w be 321-avoiding, with a(w) = A/u. Then the number r(w)
of reduced decompositions of w is given by

the number of standard tableaux of shape X/n (i.e., the entries 1, 2, ..., p appear
once each and increase in every row and column).

Proof. We know that r(w) = e(Pw), the number of linear extensions of Pw. By
Proposition 2.1, Pw = X/j,. But there is an obvious (and well-known) bijection
between linear extensions of X/f and standard tableaux of shape X/n, and the
proof follows. D

Let w be 321-avoiding with code (c1, ..., cn), where the indices i for which
Cj = 0 are given by O1 < $2 < . . . < $ k . Define the flag O(w) of w by
$(w) = (O1, O2, ..., Ok).

Note. The above definition of flag differs from the two definitions O(w) and
O*(w) in [13, p. 14]. Theorem 2.2 below is still valid with O replaced by O*, but
not by O.

The next theorem is the main result of this section.

THEOREM 2.2. Let w be a 321-avoiding permutation, with skew shape a(w) = X/p,
and flag $ = $((?). Then

the flag skew Schur function of shape X/n and flag O.

Proof. Let RK(w) and A = Ay/n((O) be as in equation (1) and before equation (8),
respectively. By Theorem 1.1 it suffices to find a bijection V : RK(w) —* A such
that if V(a, i) = T, then x* = XT. By Proposition 2.1, we have R(w) = uL(Pw).
If (a, i) € RK(w) and a = u(y1, ..., yp), then define ^(a, i) to be the tableaux
T of shape X/n obtained by placing the number i, in position yj, for 1 < i < p.
(We are identifying the poset Pw with the skew shape X/n). By the theory
of (P, o>)-partitions [20, Theorem 6.2], the conditions i1 < i-i < ... < ip and
Oj < a,-+i =» ij < ij+i are equivalent to T being semistandard. Now the labels
w(j/i) are strictly decreasing in each row, and the last element of row j is just
$j. Hence the condition ij < Oj is equivalent to T satisfying the flag condition
that all entries in row j cannot exceed $j. Thus V is the desired bijection. D
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An alternative description (implicit in the above proof) of those T enumerated
by &w = SX/^(XQ) is given by the following result.

COROLLARY 2.2. Let w be 321-avoiding, with (f(w), u(w)) = (X/n, v). Then

where T ranges over all SST of shape X/p, satisfying Tkh < u(k, h) = k - h for all
(k, h) e A/AI.

Proof. The labels decrease in each row of X/n, and the last label in row k is Ok.
Hence if Tkj1 < O then Tkh < w(k , h), and the proof follows from Theorem 2.2.
D

Let us call a permutation w for which 6W is a flag skew Schur function
s x / f t ( X O ) a skew vexillary permutation of shape X/j. Thus Theorem 2.2 asserts
that 321-avoiding permutations are skew vexillary. An obvious problem suggests
itself at this point, namely, the classification of skew vexillary permutations. To
this end we state the following result, which had been conjectured by one of us
and which was proved by V. Reiner (private communication) based on the results
of [11].

PROPOSITION 2.3. A permutation w is skew vexillary of shape X/n if one can obtain
the skew shape (or diagram) X/p from the diagram D(w) of w by the following
operations: (a) Any permutation of columns, (b) Interchange two consecutive rows
if the top row is "contained" in the bottom row, i.e., if the top row has a square in
column j, then so does the bottom row.

We don't know whether the sufficient condition given above for w to be skew
vexillary is also necessary. One could also ask if every heroic (or patriotic)
permutation is skew vexillary (the converse is false, e.g., w = 32154 is not
patriotic, but 6w is skew vexillary by Proposition 2.3).

A related problem, suggested by Corollary 2.2 but which we have not looked
at, is the following. For what permutations w does there exist a skew shape X/f
and a labeling w : X/f, -» P such that

where T ranges over all SST of shape X/p satisfying TM < w(h, k) for all
(h, k) e A/u? Of course these w include the skew vexillary permutations, where
we can take w to be constant along rows and weakly increasing along columns.

We now give several corollaries to Theorem 2.2.
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COROLLARY 2.3. Let w be 321-avoiding with a(w) - y/p,and $(w) = (&1,..., $k)-
Let Xi = (x1, x2, ..., XOa). Then

with hr as in (9).

Proof. Immediate from (9) and Theorem 2.2. D

COROLLARY 2.4. Let w be 321-avoiding with a(w) = A/J, and let Gw = limN->o
61NXw as in Section 1. Then Gw = sy/w the skew Schur function of shape A/Z.

Proof. If w is 321-avoiding with a(w) = A / z , then 1N x w is also 321-avoiding
with a(1N x w) = {(i, j - N) : (i, j) € X/n}, i.e., a(1N x w) is obtained by
translating a(w) N units to the left (using the English coordinate system). Hence
if £(w) = (&, . . . ,&) then $(1N x u>) = (O1 + N, . . . ,& + N), so

The proof of Corollary 2.4 shows that not only does a 321-avoiding permutation
w satisfy

for some skew shape A/u and flag O — (o1, ..., O1), but also

where N > 0 and £ + N — (t1 + N, ..., On + N). The same is true for vexillary
permutations by [13, (4.9)] and the definition of the flag O appearing there. We
may thus define a permutation w to be strongly skew vexillary if there is a skew
shape X/j, and flag O such that for all N > 0, equation (14) holds. Letting
N —» o in (14) yields Gw = s^/^. Hence a necessary condition that w be strongly
skew vexillary is that Gw be a skew Schur function. The converse is false, e.g., w
= 241653 is not even skew vexillary, but &w - 53221/11- We don't know whether
every skew vexillary permutation is strongly skew vexillary. An example of a
permutation w for which Gw = aA/u is given by w = 246153.

We have the following analog of Proposition 2.3 for the symmetric functions
Gw. The proof, which will not be given here, is a simple consequence of the
results in [11].

PROPOSITION 2.4. A permutation w satisfies Gw = SA/u if the diagram D(w) of wean
be transformed into the skew shape y/u by arbitrary row and column permutations.
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As was the case for Proposition 2.3, we don't know whether the converse to
Proposition 2.4 holds.

It is a simple consequence of the Littlewood-Richardson rule [14, Chapter
1.9] that SA/u is an ordinary Schur function if and only if either X / u , or its
180° rotation (A/u)r is an ordinary shape. Since Gw (for any permutation w)
is a Schur function if and only if w is vexillary [13, (7.24)(iii)], we see that a
321-avoiding permutation w is vexillary if and only if either r(w) or a(w)r is an
ordinary shape. This observation has the following curious consequence.

COROLLARY 2.5. Let g(n) be the number of permutations in Sn which are both
2143-avoiding and 321-avoiding. Then

Proof. Let g\(n) (respectively, gi(n)} be the number of 321-avoiding w e Sn such
that f ( w ) (respectively, c(w)T) is an ordinary shape. Let g^(n) be the number of
321-avoiding w e Sn such that both a(w) and a(w)T are ordinary shapes, i.e., c(w)
is a rectangle. Thus g(n) = g1(n) + g2(n) - g3(n). Reflecting an ordinary shape
about a diagonal from northeast to southwest which fixes the upper right-hand
square of a(w) yields a skew diagram a(w)T whose labels w(i, j) = i — j are
preserved. Hence g1(n) = g2(n), so g(n) = 2g1(n) - g3(n).

Fix integers a, b > 1, and suppose a(w) = A with A1 = a and X1 = b. In
order that w ( i , j ) < n - 1 for all (i, j) 6 A, we must have a + b < n. There are
n+1-a-b labelings w of A with u(i, j) < n - 1 for all (i, j) e A, and there are
("o^J2) possible partitions A. We can also have A = 0, so

If A is an o x b rectangle with a, b > 1, then a + b < n and there are n +1 - a - 6
labelings w of A. We can also have A = 0, so
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Hence

as claimed. D

Our final result of this section is a Schubert analogue of the well-known
formula

occurring in the theory of symmetric functions (e.g., [14, p. 62]). For convenience
write

PROPOSITION 2.5. Let 1 < a1 < a2 < ... < ap. Then

where w ranges over all distinct permutations (necessarily 321-avoiding) whose re-
duced decompositions are permutations of (a1, a2 , . . . , ap) (i.e., are of the form

(an(1)an(2), ..., an(p)), for T € Sp).

Proof. First note that since the ais are distinct, any permutation of (a1, a2 , . . . , ap)
is a reduced decomposition of some 321-avoiding permutation w. Since all
reduced decompositions of such w are permutations of one another, it follows
that the set S(a1, a2, . . . , ap) of all permutations of (a1, a2 , . . . , ap) is a disjoint
union of R(w)s for certain 321-avoiding w's. Thus by Theorem 1.1 it suffices to
show that
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where (b, i) ranges over all pairs b = (b1,. . . , bP) e S(a1, a 2 , . . . , ap) and i € K(b).
A typical monomial in the expansion of Ta1Ta2 . . .Tap is xj1,xj2 . . . xjp, where
1 < jk < ak. We can identify this monomial with the function f : {a1,..., ap} —> P
defined by f(ak) = j^. By the theory of P-partitions [20, Theorem 6.2; 18, Lemma
4.5.1], there is a unique permutation T = (b1,...,bp) € S(a1,..., Op) such that
f(b1) < f(b2) < . . . < f(bp), and f(bi) < f(6i+1) if bi < bi+1. (The results in [20,
18] are stated in a dual but equivalent form.) Hence we have a bijection between
the terms Xj, • • • Xip in the sum (17) and the monomials Xj1 • • • xjp appearing in
Tal . . . Tap as desired. D

Note: Proposition 2.5 can be proved by several other means, e.g., by use of
Monk's rule.

Suppose we replace each Tai = Ssai in (16) by its "stabilization" Ggai -
X] + X2 + • • • (the Schur function s1). Similarly in the right-hand side replace
each &w by Gw. Although in general the operation &w -> Gw does not commute
with multiplication (i.e., does not extend to a ring homomorphism), in the present
case it can be checked that the two limits agree. Equivalently,

where w ranges over the same set as in (16). Thus (15) is a "stable" version
of (16).

It would be interesting to generalize (16) to arbitrary sequences 1 < a1 < a2 <
. . . < ap, but we have been unable to find such a result. If for 1 < a1 < a2 <
• • • < ap we write

then it is no longer true that E cwCw = 8p (unless a1 < a2 < . . . < ap). For
instance, for T1T2T3 we get EcwGw = s4 + 3s31 + 2s22 + s211- It would be
interesting to find an explicit description of E CwGw.

3. Principal specialization

Define the stable principal specialization of a Schubert polynomial &w (or more
generally of any power series f(x1, x2, . . .)) to be the polynomial 6W(1, q, q2, . . . )
respectively, power series f(I, q, q2, . . .)) in the variable q. If S is a finite subset
of Z, then we write £S = Ei€si. The following formula was conjectured by
Macdonald [13,(6.11q?), p.91] and is proved in [7]. For any permutation w,
we have
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where the sum ranges over all a = (a1,...,ap) e R(w), [b] = 1 — qb, [p]! =
[1][2] • • • [p], and comaj(a) = £{i : 1 < i < p - 1, a; < ai+1} (the comajor index
of a). Here we will deduce some properties of the power series SA/u(1, q, q2, ...)
from (18) in the case when w is 321-avoiding. (It is also possible to prove (18)
for 321-avoiding w using properties of skew Schur functions sy/u, but there is no
point in doing so since (18) is now known to hold for all w.)

LEMMA 3.1. Let w be 321-avoiding of length p, with a(w) = X / f . Then

Proof. Regard (A/u, w) = (r(w), u(w)) as a labeled poset (P, w), as in the proof
of Theorem 2.2. Let w be the labeling of P defined by w(s) = -w(s) for all
s e P. A (P, w)-partition T, as defined in [20, p. 1], is an order-reversing map
T : P -» N such that if a < t in P and w(s) > w(t), then T(S) > T( t ) . Hence
T is obtained by inserting nonnegative integers into the squares of y/n which
are weakly decreasing along rows and strictly decreasing along columns. By the
standard combinatorial interpretation of skew Schur functions [21, Definition
12.1] we have

where T ranges over all (P, u)-partitions and |T| = £)s epw(s).
It follows from [20, Theorem 7.2] that we have

where e ranges over all linear extensions (e1, ..., ep) of P, w(e) = (w(e1), ...,
w(ep)), and maj(b1, .. . , bp) = £{1 < i < p - 1 : bi > bi+1}. Clearly maj(w(e)) =
comaj(w(e)). By Theorem 2.1 and Proposition 2.1 the sequences w(e) are just
the reduced decompositions of w, and the proof follows. n

For a tableau T = (Ty), write |T| = £Tij.

THEOREM 3.1. Let y/n c Z x Z be a skew shape, embedded in 1 x Z so that if
(i, j) € X/n then i-j>0. Let
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summed over all SST (allowing 0 as a part) T = (Tij) of shape A/u such that
Tij <i-j for all (i, j) € A/i (Equivalentfy, Tij < ai, where ai = i - j for (i, j)
the rightmost square of T in row i.) Then

Proof. Let w be 321-avoiding with a(w) = A/z (exists by Proposition 2.2). For
all (a1, ..., ap) € R(w) we have

by Proposition 2.1. Hence by (20) and Lemma 3.1, we have

But &w(1, q, q2, ...) = tA/J(q) ty Theorem 2.2, and the proof follows. D

Example 3.1. Let (A/ji, w) be given by

The tableaux enumerated by tx/fi(q) are

Hence

Let us consider the special case n = 0 of Theorem 3.1. Suppose A = {(i, j):
1 < i < ^(A), 1 < j < AJ}. It is well known [21, Theorem 15.3; 14, Example 1, p.
27] that for any m > 1,



372 BILLEY, JOCKUSCH, AND STANLEY

where H\(q) is independent of m. (An explicit formula exists for H\(q), but this
is irrelevant here.) Letting m -> oo in (21) yields s\(l, q, q2, ...) = H\(q), so

Equation (22) is similar to (20). We can change the embedding A c Z x Z so
that the exponent j - i + m in (22) becomes simply j - i. However, in (20) the
corresponding exponent is i — j. We can reconcile the two formulas by appealing
to the reciprocity theorem for (P, w)-partitions [20 Theorem 10.1], which implies
that if ax / l t(1, q, q2, ...) = Gy^q), then

(as rational functions of q). (See also [20, Proposition 11.1].) It then follows
easily from (20) that if A is embedded in Z x Z so that the main diagonal elements
(i, j) satisfy i - j = m, then

where n(A) = £ (2) - XI (2)- It is easy to give a direct combinatorial proof that

thereby proving (20) directly from known results when n = 0. But for general u,
it seems to be new that the rational function sA//J(l, q, q2, ...) has (not necessarily
least) denominator U[i - j] as in (20). Moreover, the numerator coefficients
are then nonnegative. Note that the left-hand side of (20) does not depend on
the actual embedding of A/4 in Z x Z, while the right-hand side does depend
on this embedding. It follows that the denominator of sA/M(l, g, q2,...) can
be chosen to be the greatest common divisor of n[i - j], over all embeddings
A/z c Z x Z (for which i - j > 0 for all (i, j) 6 A/JI). For instance, suppose
A/M = (4, 4, 3)/(2, 1). One embedding gives denominator [1][2]2[3][4]2[5][6],
while another gives [2][3]2[4][5]2[6][7]. Hence sA/^(l, q, q2, ...) has denominator
[1]3[2][3][4][5][6]. (No further embeddings lead to a smaller denominator.)

Let us mention one further special case of Theorem 3.1. A border strip (or
rim hook) [14, Example 11, p. 31] is a skew shape \/n such that for any two
consecutive rows there is exactly one column which intersects both rows. Such
a shape can be embedded in Z x Z so that the labels i - j consist simply of
1,2, . . . ,p (once each). Assume such an embedding has been chosen. By
Theorem 3.1 we have

^ v
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On the other hand, it is a well-known consequence of the theory of (P, u;)-
partitions (see [20, Corollary 7.2]) that

where T ranges over all skew SYT of shape y/p., and where

maj(T) = y{i: i + 1 appears in a lower row of T than i}.

Hence we have the curious formula

where y/n is a border strip and tx/u(q) is given by (19). R. Simion has observed
that a bijective proof of (23) is a simple consequence of a well-known bijection
/ : <SP -> Sp of Foata [6] satisfying l(w) = maj(/(u>)).

4. Open problems

For the reader's convenience we list all open problems and conjectures appearing
in this paper.

• Find a direct description of the multiset Mw. (after Example 1.2)
• Classify patriotic (= heroic) permutations. In particular, is every saturated

permutation heroic? (after Proposition 1.4)
• Is every heroic permutation skew vexillary? (after Corollary 2.2)
• Classify all skew vexillary permutations. In particular, does the converse to

Proposition 2.3 hold? (after Proposition 2.3)
• For what permutations w does 6^ = ^TxT, as defined by equation (13)?
• Is every skew vexillary permutation strongly skew vexillary? (after Corollary 2.4)
• When is Gw a skew Schur function? In particular, is the converse to Proposi-

tion 2.4 valid?
• Expand TaiT02 • • -T^ in terms of Schubert polynomials for any ot < 02 < • • • <

Op. (after Proposition 2.5)
• In the previous problem if TalTa2 • • -T^ = E cW&W, then find a simple explicit

description of the symmetric function £ CwGw. (after Proposition 2.5)

Added in proof. V. Reiner has observed that 214365 is saturated but not heroic,
and that 246153 is heroic but not skew vexillary. Moreover, he has solved the
last open problem of Section 4.
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