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MAXIMAL SINGULAR LOCI OF SCHUBERT VARIETIES 
IN SL(n)/B 

SARA C. BILLEY AND GREGORY S. WARRINGTON 

ABSTRACT. Schubert varieties in the flag manifold SL(n)/B play a key role 
in our understanding of projective varieties. One important problem is to de- 
termine the locus of singular points in a variety. In 1990, Lakshmibai and 

Sandhya showed that the Schubert variety Xw is nonsingular if and only if 
w avoids the patterns 4231 and 3412. They also gave a conjectural descrip- 
tion of the singular locus of X,. In 1999, Gasharov proved one direction of 
their conjecture. In this paper we give an explicit combinatorial description 
of the irreducible components of the singular locus of the Schubert variety 
X, for any element w E 6n. In doing so, we prove both directions of the 

Lakshmibai-Sandhya conjecture. These irreducible components are indexed 

by permutations which differ from w by a cycle depending naturally on a 4231 
or 3412 pattern in w. Our description of the irreducible components is compu- 
tationally more efficient (O(n6)) than the previously best known algorithms, 
which were all exponential in time. Furthermore, we give simple formulas for 

calculating the Kazhdan-Lusztig polynomials at the maximum singular points. 

1. INTRODUCTION 

Schubert varieties play an essential role in the study of the homogeneous spaces 
G/B for any semisimple group G and Borel subgroup B; every closed subvariety 
in G/B can be written as the union of Schubert varieties, the classes of Schubert 
varieties form a basis for the cohomology ring of G/B and the Schubert varieties 
correspond to the lower order ideals of a partial order associated to G/B. Specif- 
ically, this Bruhat order is an order on the T-fixed points in G/B where T is the 
maximal torus in B. The T-fixed points, ew, correspond bijectively with elements 
in the Weyl group W = N(T)/T of G and T. A tremendous amount of information 
about a Schubert variety can be obtained by examining the corresponding Weyl 
group element. Our main theorem gives a simple and efficient method for giving 
the irreducible components of the singular locus of a Schubert variety.1 

In the late 1950's, Chevalley [13] showed that all Schubert varieties in G/B are 
nonsingular in codimension one. Since that time, many beautiful results on deter- 
mining singular points of Schubert varieties have surfaced (see [3]). By definition, 
the Schubert variety X, is the closure of the B-orbit of ew. Therefore any point 
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1While in the process of preparing this submission, the authors learned that Cortez [14], Kassel- 

Lascoux-Reutenauer [19] and Manivel [27] have each recently independently proved a theorem 

equivalent to Theorem 1. 
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p E X, is singular if and only if all points in the orbit Bp are singular. Since the 
singular locus of a variety is closed, the singular locus of X, is a union of Schubert 
varieties indexed by the maximal elements v < w such that ev is singular in Xw. 

Let maxsing(Xw) denote the maximal set of Weyl group elements corresponding 
to singular points in Xw in Bruhat order, i.e. Xv is an irreducible component of the 
singular locus of Xw if and only if v E maxsing(Xw). The goal of this paper is to give 
an explicit algorithm for finding maxsing(Xw) in the case where G is SL,(C), B 
is the set of invertible upper triangular matrices, T is the set of invertible diagonal 
matrices, and W is the symmetric group n-. The algorithm we present is very 
efficient, O(n6), and removes the need to search through all nonsingular T-fixed 
points (as is the case with previously known techniques). 

In type A (i.e., G = SL(n)), smoothness is equivalent to rational smoothness 
([15], see also [12] in the case of ADE) so the maximal singular locus of X, also 
determines the maximal permutations x < w for which the corresponding Kazhdan- 
Lusztig polynomial is different from 1. We use the explicit form of maxsing(Xw) 
to compute all Kazhdan-Lusztig polynomials at maximal singular points (MSP's); 
they are either 1 + q + ..- + qk or 1 + qk depending on whether the corresponding 
bad pattern is 4231 or 3412 (respectively). These formulas have also been found by 
Manivel [26] and Cortez [14]. 

2. MAIN RESULTS 

In 1990, Lakshmibai and Sandhya [21] showed that the Schubert variety Xw C 
SL(n)/B is smooth at every point if and only if the permutation matrix for w does 
not contain any 4 x 4 submatrix equal to 3412 or 4231. We use these two permu- 
tation patterns to produce the maximal permutations below w which correspond 
to points in the singular locus. This verifies the conjecture stated in [21] on the 
singular locus of Xw. (Gasharov, using a map similar to the one we introduce in 
Section 6, shows in [17] that the points constructed in [21] are singular. His result 
proves one direction of this conjecture.) In fact, our proof starts from an arbitrary 
maximal singular T-fixed point ex in Xw and shows that w must contain a 4231 or 
3412 pattern and x must contain a 2143 or 1324 pattern (respectively). 

The main theorem below shows that elements of maxsing(Xw) are obtained by 
acting on w by certain cycles. These cycles are best absorbed graphically in terms 
of the permutation matrices mat(x) and mat(w). Examples are shown in Figure 1. 

Theorem 1. X. is an irreducible component of the singular locus of X, if and 
only if 

(1) x = w o (al,..., a,,m3k, ./..., i31) for disjoint sequences 

1 < a < *- < a,m < n, with w(al) > .' > w(am), and 

1 < /1 < * . < 3k < n, with w(P31) > .. > w(/k). 

(2) The permutation matrices of x and w differ in one of the three ways shown 
in Figure 1. 

(3) The interiors of the shaded regions in Figure 1 do not contain any other 
1's in the permutation matrix of w. In the third case, the 1 's contained in 
the shaded region must form a decreasing sequence. 

After introducing basic notation in Section 3, we then introduce in Section 4 
the pictorial characterization of the Bruhat order we rely on. In Sections 5 and 
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a, 9B:2 0 
, a, 

a2 P2 
a2 

a3 0 a2 

(1) 4231 Case (2) 3412 Case (3) 45312 Case 

FIGURE 1. Possible differences between permutation matrices for 
x E maxsing(Xw) as described in Theorem 1. o's denote l's in 

mat(w); *'s denote l's in mat(x). 

6, we discuss the Lakshmibai-Seshadri basis for the tangent space of a Schubert 
variety indexed by transpositions and the set R(x, w) = {t: x < xt < w}. We 
also define a set of maps that allows us to relate 7Z(x, w) and R(y, w) when x and 
y differ by a transposition. These maps will then allow us to investigate not only 
whether a point e. is singular, but whether it is maximally singular. To describe 
those permutations x E maxsing(Xw), we show that related permutations x must, 
among other qualities, avoid the patterns 231, 312 and 1234. We complete the 
description of maxsing(X,) in Sections 8 and 9. 

The remaining sections contain applications arising from our description of 

maxsing(Xw). In Section 10, we prove the conjecture of Lakshmibai and Sand- 
hya on the composition of maxsing(Xw). Using the tools we have developed, in 
Section 11 we calculate the values of the Kazhdan-Lusztig polynomials at maximal 
singular points. In Section 12, we give some example calculations pertaining to the 
composition of maxsing(X,). Finally, in Section 13, we state a simple method for 
determining the number of elements in maxsing(Xw) in terms of pattern avoidance 
and containment. 

3. PRELIMINARIES 

We begin by introducing our basic notation and terminology. Let en denote the 
symmetric group on n letters. We will view elements of Gn as permutations on 
[1,..., n]. Let w(i) be the image of i under the permutation w. We have a one- 
line notation for a permutation w given by writing the image of [1,..., n] under 
the action of w: [w(1), w(2),..., w(n)]. We will also often utilize the permutation 
matrix for w (denoted mat(w)). 

Let si denote the adjacent transposition interchanging i and i + 1. Then S = 

{Si)iE[l,...,n-l] is the standard generating set for en with relations s? = 1, iSj = 

sjsi for i - jl > 1, and sisi+lSi = si+lSii+l for 0 < i < n. Let T denote the set 
of all transpositions in n,. The elements of T are all the conjugates of elements in 
S: 

(3.1) T = {tj,k = SjSj+l . * Sk-25k-k-2 *''Sj+lSj 1 < j < k < n}. 

If we wish to refer to a transposition t that affects positions a and b, but the relative 
values of a and b are unknown, we will write t{a,b}. 

The length l(w) of an element w E en is the minimum r for which we have an 
expression w = sil, . sir. A reduced expression w = Sil 

- 
Sir is an expression for 
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which l(w) = r. It is a standard fact that 

(3.2) l(w) = #{1 < i < j < n: w(i) > w(j)}. 

Definition 2. Let x, w E en, p, q E Z. Define the rank function for w by r,w(p, q) = 
#{i < p: w(i) > q}. Also, the difference function for the pair x, w is defined by 
dx, (p, q) = rw(p, q) - rx(p, q). 

In SL(n)/B, Schubert varieties can be defined in terms of the rank function. To 
do this, fix a basis {u1, 2,.. ., un} of Cn. This fixes a base flag (F1 C F2 C ... C 

Fn) where Fi is the span of {un,..., un-i+l). We identify SL(n)/B with the set 
of all complete flags of vector spaces (V1 C V2 C ... C V, C7n) with dim V = i. 
Then 

(3.3) Xw = {(V1 C V2 C * C Vn) :dim(Vp n Fn-q+l) < rw(p,q)}. 

(This definition is equivalent to that given in [16].) Note that the flag 

(3.4) ew = 
((Uw(n)) C (Uw(n)Uw(n-l)) C ** C (Uw(n) . . w(l))) 

is an element of Xw. Furthermore, ew is fixed by the left T action and X, can be 
viewed as the closure of the orbit Bew. Therefore, X, C Xw if and only if ev E Xw. 
This defines a partial order, called the Bruhat (or Bruhat-Chevalley) order, on ,n 
by 

(3.5) v w < w X Xv C Xw. 

The Bruhat order has a number of characterizations (see, e.g., [18]). One of the 
most common definitions is as the transitive closure of the relations vt < v for t E T 
if l(vt) < l(v). However, we prefer to work with a more graphical characterization 
which follows directly from the definition of the rank and difference functions above. 
The corresponding "Bruhat pictures" that we associate to each pair x < w will be 
discussed in the next section. These pictures will rely on the two conclusions below. 

Lemma 3. We have x < w if and only if dx, is everywhere non-negative. 

Corollary 4. If x < y < w, then dx,w - d,w is everywhere non-negative. 

The following fact about the Bruhat order will in useful throughout the text. 
An analogous left-handed version exists. 

Lemma 5 ([18, 7.4]). If s E S and ws < w, then xs < w = x < w. 

The Bruhat graph of w is the graph with vertices labeled by {v < w} and vl 
is joined to v2 by a directed edge if v1 = v2t for some t E T and v1 < v2 in 
Bruhat order. This graph plays a central role in the study of Schubert varieties. 
For example, Lakshmibai and Seshadri have shown that in SL(n)/B, the tangent 
space to Xw at ex has a basis indexed by {t E T : xt < w}, i.e. the edges of 
the Bruhat graph adjacent to x. This fact forms the main criterion we will use in 
Section 5 for smoothness at a point. In fact, since xt < x implies xt < w we will 
just need to consider the edges "going up" from x in the Bruhat graph of w. This 
set will be denoted by 

R(x, w) := {t E T: x < xt < w}. 

Over the last few years, it has become apparent that properties of the Bruhat 
order can often be efficiently characterized by "pattern avoidance" [2, 4, 5, 25, 30]. 
We say that w = [w(1),...,w(n)] avoids the pattern v = [v(1),..., v(k)] for k < 
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a a 

c c 

(1)x (2) y=Xta,b 

FIGURE 2. We see (among other facts) that d ,w(o) > 1, 

dy,wo(A) = d,w(A) - 1 > 0, ptx(c) = ptw(c) and tc,, E Z(x, w). 

n if we cannot find 1 < i1 < *.. < ik < n with w(i),...,w(ik) in the same 
relative order as v(1),..., v(k) - i.e., no submatrix of mat(w) on rows i1,... , ik 
and columns w(il),..., w(ic) is the permutation matrix of v. Our characterization 
of the maximal singular locus is yet another example of the utility of this notion. 

More generally, we can define pattern avoidance or containment in terms of the 
following flattening function. For any set Z = {zl < z2 < ... < Zk} C [1,..., n], 
and x E 6n, define flz(x) to be the "flattened" permutation on [1,... ,k] whose 
elements are in the same relative order as [x(z1),..., x(zk)]. When the set Z is clear 
from context, we will abbreviate flz(x) by x. We will also write fl(i, j,..., k) for the 
flattened permutation on the sequence i, j,..., k and write x' for fl[,...,n]\{i} (x) 

It will also be useful to have notation for an "unflattening" operator. Given a 
permutation x E en, a set Z C {1,...,n} of cardinality k, and a permutation 
u E Sk, we can define a new permutation unflx(u) cG n by requiring that 

(1) flz(unflz(u)) = u, and 
(2) x(a) = (unflz(u))(a) if a E {1,..., n \ Z. 

When x and Z are clear from context, we abbreviate unfl (u) by u. 

Example 6. For x = [5,2,4,1,6,3] and Z = {3,5,6}, we have flz(x) = [2,3, 1] 
and (unflz)([3,1,2]) = [5,2,6,1,3,4]. Note that x = flz(x). 

4. BRUHAT PICTURES 

The function dx,w affords us a graphical view of the Bruhat order. Most impor- 
tantly, it lets us see the set RZ(x, w). We will now introduce the graphical notation 
utilized in the remainder of the paper that allows us to do this. A diagram display- 
ing the notation we are about to describe is offered in Figure 2. 

First, we plot, as black disks, all or some of the positions containing l's in the 
permutation matrix mat(x) of x. We will sometimes overlay mat(x) and mat(w). 
In these cases, l's in mat(w) will be marked by open circles. Points that are 
simultaneously in both diagrams will consist of a black disk and a larger concentric 
circle. Let [a, b] x [c, d] denote the set of all points (p, q) E R2 such that a < p < b 
and c < q < d. The following notation will be handy. 
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FIGURE 3. In the above configuration, 7Z(x, w) = {t,2, t2,4, t2,5, t4,5} 

Definition 7. For tp,q E R(x, w), set 

(4.1) Ap,q := Ap,q(X) = p + 1, q - 1] x [x(p) + 1, x(q) - 1], 

(4.2) Ap,q:= Ap, q(X) = [p, q] x [x(p),x(q)] 

(4.3) ptx(c) :=(c, x(c)) for c [1,...,n]. 

Along with the points of mat(x), we will often shade parts of our diagram in 
order to specify that d,,w satisfies a particular inequality on a given region. Light 
shading on a region signifies that dx,w > 1 on that region. Dark shading signifies 
dX,w > 2. No shading places no restrictions on the values dx,w. A region with a 
black border is one where dx,w achieves the minimum possible value allowed by 
the shading on that region. Dotted borders are used to demarcate regions we wish 
to discuss in the text. A solid or dotted curve connecting two points in dx,w will 
denote an element of 7Z(x, w). A dotted curve will be used to designate t when we 
are particularly interested in y = xt. A dashed curve will be used when we wish 
to mark a reflection t' E RZ(y, w). Of course, if tt' $ t't, and our picture is of d,,,, 
then only one of the endpoints of our dashed curve will correspond to a point of 

As mentioned above, the great utility of these diagrams arises from being able to 
visualize 7Z(x, w) along with the information on the Bruhat order. To see how we do 
this, suppose we have some reflection ta,b E R(x, w) (which implies x < xta,b < w). 
Now compare the shading (with respect to w) in mat(x) and mat(xta,b). We see (as 
in Figure 2), that in the region Aa,b(x), dXta,b,w = dx,w - 1. Hence, by Lemma 3, 
we can state the following: 

Fact 8. Let ta,b E T with x < xta,b. The transposition ta,b is in 7R(x, w) if and 
only if it corresponds to a region on which dx,w,Aa b > 1. An example is given in 
Figure 3. 

Note that the values of dx,w on the region Aa,b \ Aa,b are not considered in 
determining the membership of ta,b in R(x, w). 

The following lemmas will be used several times in future sections. The first one 
allows us to infer the presence of points in mat(x) in a region based on a particular 
common pattern of shading. 

Lemma 9. Let x < w and suppose p, p', q, q' E Z such that 

(1) p<p', q < q', 
(2) d,w(p, q') = 0, 
(3) dx,w(p, q) = a, dx,w(p', q') = /, dx,w(p', q) = -y 

Then there exist at least a + / -y values m such that pt,(m) e [p + 1, p'- 1] x 

[q + 1, q'- 1] with x(m) $ w(m). 
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q q 

A D 

CP B 

FIGURE 4. We have indicated certain values of d,,, at the lower 
left corner of each region. 

Proof. Define regions A,B,C and D as in Figure 4. For R C [1, n] x [1, n], define 

(4.4) Ox,w(R) = #{(p, q) ER: q = w(p)}- #{(p, q) E R: q = x(p)}. 

Then, dx,w(p', q) = x,w (A) + x,w (B) + Ox,w (C) +x, (D). So plugging in the 

specified values we have Ox,w(C) = -(a +3 - y) and there are exactly a +3 -y 
more l's of mat(x) than l's of mat(w) in region C. O 

Lemma 10. Let u, w E ?n and suppose 1 < i < j < k < n such that flijk(u) = 123. 
If both 

(4.5) w > x = uo (k,j, i) (i.e., x = 312) and 

(4.6) w > y = u o (i,j, k) (i.e., y = 231) 

then w > z = u o (i k) (i.e., z = 321). 

Proof. Notice that dz,w(p, ) = dx,w(p, ) for p < j and dz,w(p, ) = dy,w(p, ) for 
p > j. By Lemma 3, v < w if and only if dv,w > 0. Since x, y < w, both dx,w > 0 
and dy,w > 0. Combining this with our first observation implies that z < w. O 

5. A CRITERION FOR MAXIMAL SMOOTHNESS 

To prove Theorem 1, we start from the fact that (by definition) Xw is smooth at 
ex if and only if the dimension of the Zariski tangent space at that point is equal 
to l(w) = dim(Xw). Lakshmibai and Seshadri, [22], describe the dimension of this 

tangent space in terms of the root system. Using the fact that #{t E T : xt < x} = 

1(x), we can paraphrase their result as: 

Theorem 11 ([22]). The Schubert variety Xw E SL(n)/B is smooth at ex if and 

only if #R(x,w) := #{t E T: x < xt < w} equals (w) - l(x). 

This yields the following characterization of maxsing(Xw): 

Fact 12. We have x E maxsing(Xw) if and only if 

(1) #R7(x, w) > l(w)- l(x) and 

(2) for all t E RZ(x, w), #R(xt, w) = I(w) - l(xt). 

As may be ascertained from Theorem 1, the criteria for x to be an element of 

maxsing(Xw) are local in nature. This implies that we may concentrate on only 
certain indices in our permutation w in order to determine maxsing(Xw). We now 
describe these indices explicitly. 

Definition 13. Let 

(5.1) A(x, w) = {i, 1 < i < n: 3 j, 1 < j < n, with t{i,j} E 1(x, w)}. 
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q q 

P , 
a 

p' 
b 

FIGURE 5. o = (p, q') and A = (p', q). 

For A(x,w) = {d1 < d2 < * < dk}, set 

(5.2) x = fl([x(dl), x(d2),....,x(dk)]) and 

(5.3) w = fl([w(di), w(d2),..., w(dk)]). 

Note that x and w are permutations in Sk. 
We now give a sufficient condition for an index b to be in A(x, w). 

Proposition 14. Suppose x < w and x(b) Z- w(b) with 1 < b < n. 

(1) If w(b) < x(b), then 3 a < b with ta,b e RZ(x, w) and x(a) Z w(a). 
(2) If w(b) > x(b), then 3 c > b with tb,c E Z(x, w) and x(c) 5 w(c). 

Proof. First we prove the case of w(b) < x(b). Note that 

(5.4) dx,w(b - 1, x(b)) = 1 + dx,w(b, x(b)) > 1 

since w(b) < x(b). Let p' = b - 1. Choose q as large as possible such that q < x(b) 
and dx,w(p', q) = 0 (see Figure 5). Such a q must exist since dx,w(, 0) = 0. Now 
choose p as small as possible such that p < p' and dx,w(g, h) > 1 for all g, h with 
(g, h) E [p + ,p'] x [q + 1, x(b)]. Then there exists a q', q < q' < x(b) such that 

dz,w(p,q') = 0. By construction, 

dx,w(p, q') = O, dx,w(p',q) = O, dx,(p, q) > 0 and dx,w(p',q') > 1. 

By Lemma 9, there exists an a such that ptx(a) E [p + l,p'] x [q,q' - 1] and 
x(a) 7 w(a). Then dx,w|IAa,b > 1, so by Fact 8, ta,b E R(x,w). This proves our 
claim. 

To prove the case of w(b) > x(b), it is easiest to use dual rank and difference 
functions: 

(5.5) r'(p, q) := #{i > p: w(i) < q}, 

(5.6) dw:= r r. 

One can check that x < w if and only if d' w > 0 and then argue as above using 
this new rank function. Using the dual rank function is equivalent to checking 
X-1 < w-1. O 

Corollary 15. If x < w and dx,w(ptx(b)) > O, then there exists b' < b with 

tb',b E 2(X, w). 

Corollary 16. Let x < w. Then p f A(x, w) if and only if both 

dx,w(pt(p) + (1,0)) = 0 and dx,w(ptx(p) + (0,1)) = 0. 
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Proposition 14 tells us that if x(i) : w(i), then i E A(x, w). It turns out that 
the question of whether or not x E maxsing(Xw) depends only on the pair x, w. 
This is borne out by the following simple facts. They will be used without comment 
in the remainder of the paper. 

Lemma 17. We have the following: 

(1) If x(i) = w(i), then xt < w' -= x < w. 

(2) x < w x < w. 

Proof. The first equivalence follows from Lemma 3 by comparing dx,w and dx,; . 
The second follows from the first by noting that i E A(x, w) whenever x(i) $ 
w(i). D 

Proposition 18. We have the following: 

(1) 1(w) - (x) = l(W) -l(). 
(2) There exists a bijection Z(x, w) - Z(x, w). 
(3) x E maxsing(Xw) if and only if E maxsing(X~). 

Proof. For any i ~ A(x, w), 

(5.7) (w) -(x) - (l(w') - (xt)) = dx,w(ptx(i)) + d',(pt,(i)). 

By Corollary 15, dx,w(ptx(i)) = 0 and by using the dual rank function we see that 

d',w(ptx(i)) is also 0. This proves (1). Part (2) follows immediately from Fact 8 
and the definition of A(x, w) by comparing dx,w and di,j. Part (3) follows from 
the first two parts along with Corollary 21 (stated below). O 

6. THE MAP q)t 

In Fact 12 we claimed that maxsing(Xw) can be identified in terms of RZ(x, w) 
for x < w. To carry this out in practice, we will need to relate (Z(x, w) to R(y, w) 
when x, y differ by an element of T. So, for every triple yt < y < w with t E T, 
we will define a map ty' : Z(y, w) -) T. In Theorem 20 we will show that the 
image is actually contained in (Z(yt, w). The values of y, w are usually clear from 
context and we will often abbreviate "'w as $t. 

A similar map has been defined by Gasharov [17] for the purpose of showing 
that certain elements constructed by Lakshmibai and Sandhya in [21] are, in fact, 
singular points. (See Section 10 for details.) Theorem 20 is slightly stronger, 
however, than the corresponding result in [17]. We omit the proof as it follows 
from Lemma 10 and Table 1 by inspection. 

Definition 19. Fix yt < y < w. Given some t' E R(y, w), if t and t' commute, we 
define qt(t') = t'. Otherwise, we can find a < b < c such that d ~ {a, b, c} implies 
y(d) = yt(d) = yt'(d). Then we define 4Y"(t') according to Table 1. Figure 6 
shows the Bruhat pictures corresponding to Case A. 

Theorem 20. Fix yt < y < w. The map 7bt(R(y, w)) --* Z(yt, w) \ {t} is injective. 

Recall from Definition 13 that 

(6.1) A(x, w) = i, 1 < i < n: 3 j, 1 < j < n, with t{i,j} E z(x, w)}. 
One can check by inspecting Table 1 that we obtain the following: 

Corollary 21. For t E T, yt < y < w implies that A(y, w) C A(yt, w). 
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TABLE 1. Definition of map t'w. We have split into cases indexed 
by flabc(y) and whether t' = ta,b, t' = ta,c or t' = tb,,. Note that 
the matter of inclusion of ta,c in R(y, w) is determined by the first 
three columns in Cases A.i, B.i, C and D. The final two columns 
are used in proving that Ot maps R(y, w) into 7Z(yt, w). 

Case y t t' ta,c E Z(y, w) qt(t') yt yty'w(t') 

A.i) 213 ta,b ta,c tb,c 312 132 

ii) 213 ta,b tb,c tb,c 231 132 

iii) 213 ta,b tb,c / ta,c 231 321 

B.i) 132 tb,c ta,c 
/ 

ta,b 231 213 

ii) 132 tb,c ta,b x ta,b 312 213 

iii) 132 tb,c ta,b / ta,c 312 321 

C.i) 312 ta,b tb,c X ta,c 321 231 

ii) 312 ta,c tb,c X tb,c 321 231 

D.i) 231 tb,c ta,b X ta,c 321 312 

ii) 231 ta,c ta,b x ta,b 321 312 

a 

yb 
C 4, 

Case A. i 

4? 

Case A. ii Case A. iii 

FIGURE 6. Depiction of Case A from Definition 19. The dashed 
(resp. dotted, solid) arcs represent t' (resp. t, ot(t')). 

For a pair of reflections t, t' where t E Im t',, it will be useful to know what we 
can say about the membership of t' in Im (t. 

Proposition 22 (Reciprocity). If t,t' E R(x,w), t 5 t', with l(xt) = l(xt') = 

(x) + 1, then t' E Im txt'w , t E Im xt,w 

Proof. Suppose t E Im bt, . We will show that t' E Im 4t. 

First, consider the case where tt' = t't. From the definition of b, we see that 

t-l(t) = t. So w > xt't = xtt'. This implies that t' E Z(xt, w) and therefore 

?t(t') = t'. 
Now we suppose tt' 7 t't. So a < b < c are determined such that d ? {a, b, c} 

implies x(d) = xt(d) = xt'(d). Let x = flab,(x). Note that: 

(1) By hypothesis, l(xt) = l(xt') = 1(x) + 1. 

a 

yt b 
c 
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(2) If x E {231, 312, 321}, then at most one of ta,b ta,c, tb,c E Z(x, w), not two. 

We will prove the case x = 132 and leave the cases x = 213 and 123 to the reader. 
Let x = 132. Then {t,t'} = {ta,b, ta,c} and w > 312,231. By Lemma 10, w > 321. 
So ta,b E JR(xta,c, w) and, as we are in Case D.ii of Definition 19, ta,b = bta,c (ta,b). 
Similarly, tb,c E Z(xta,b, w) and, as we are in Case C.i of Definition 19, ta,c 

ta,b (tb,c) ? 

7. INCOMPATIBLE EDGES AND RESTRICTIONS ON 7Z(X, w) 

Let x < xt < w. We make the following observation from Theorem 11: If 
#qt(7R(xt, w)) < #R(x, w) - 1(x) + l(xt), then ex is a singular point of Xw. The 
above fact is most conveniently expressed in terms of the following notation: 

Definition 23. For x < w and t E R(x, w), let 

(7.1) ?t(x, w) = R(x, w) \ ({t} U ot(7(xt, w))) 

denote the set of "extra" reflections corresponding to x and t. We often write 
?a,b(x, w) for ?ta, (x, w). If t' E ?t(x, w), then we say that t and t' are incompatible 
edges (in the Bruhat graph). 

The elements of ?t(x, w) are "extra" edges in the sense that they correspond to 
an increase in the dimension of the Zariski tangent space. 

Fact 24. If t, t' E i(x, w) with t' E ?t(x, w) and l(xt) = l(x) + 1, then x < w is 
singular. 

Fact 25. x < w is an MSP (maximal singular point) implies that for every t E 
R(x, w) with l(xt) = 1(x) + 1, ?t(x, w) 4 0. 

Note, however, that if x is a singular point, but not an MSP, then it is possible 
that ?t(x, w) = 0. An example is afforded by w = [4,2,3, 1], x = [1,2,3,4] and 
t = t1,2. Conversely, if l(xt) > l(x) + 1, then we may have ?t(x, w) 4 0 even if Xw 
is entirely smooth. Take, for example, w = [3, 2, 1], x = [1, 2,3], and t = t1,3. 

Proposition 26. All pairs of incompatible edges ta,b, tc,d E 7Z(x, w) can be classified 
into the following two types: 

(1) Patch Incompatibility (e.g., Figure 7(1), (2)): 
If ta,b, tc,d e 7Z(x, w) with {a, b} n {c, d} = 0, then ta,b E &?,d(x, w) if and 

only if min(dx,wIA) = 1 where A = 4Aa,b n Ac,d 
(2) Link Incompatibility (e.g., Figure 7(3)): 

If ta,b, tb,c E 1Z(x, w), then 

(7 .2 ta,b E Eb,c(X, W) -- tb,c e ?a,b(x, W) 
(7.2) t min(dx,w,B) = min(dx,Glc) = 0. 

If x < w is an MSP, then all possible arrangements of Aa,b and Ac,d are drawn in 
Figure 7. 

Proof. The proof of Patch Incompatibility is clear. To prove Link Incompatibility, 
it suffices to consider Cases A and B of Definition 19. The proof that these are all 
possible incompatible pairs follows from Lemmas 27, 28, and 29 below. Z 
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b d 

(1) Patch (2) Patch (3) Link 

FIGURE 7 

'' , ............ 

kk k 

() x (2) xti,k (3) xtk, 

FIGURE 8 

Lemma 27 (Ell Lemma). Let 1 < i < j < k < n. 

(1) If flijk(x) = 213 and ti,k,tj,k E R.(x,w), then ti,k E ImXtj'kw and tj,k E 

Im Xtit k so ti,k, tj,k are not incompatible. 

(2) If flijk(x) = 132 and ti,j,ti,k E 1(x,w), then tij E Im Xtk', and ti,k E 

Im xti,j'w so tij, ti,k are not incompatible. 

Proof. We only prove (1) as the proof for (2) is entirely analogous. 
Diagrams for x, Xti,k and xtj,k are given in Figure 8. 

We see that ti,k E tR(x, w) implies w > 312 and tj,k E 7(x, w) implies w > 231. 

So, by Lemma 10, Xti,ktj,k = Xtj,kti,j = 321 < w. Equivalently, tj,k E R(xti,k,w) 
and ti,j E R(xtj,k, w) So, (Case C.ii of Definition 19) xt,kk,W (tj,k) = tj,k and (Case 
D.i of Definition 19) tjk (ti,j) = ti,k- 

Lemma 28. Let ta,b, tc,d E 1(x, w). If Aa,b Ac,d = 0, then ta,b ?c,,d(X, w) (i.e., 
ta,b E Im Otc,d)- 

Proof. Since Aa,b fn 4c,d = 0, we have ta,b E TZ(Xtc,d, w) and ta,btc,d = tc,dta,b SO 
ta,b E Im btc,d D 

There will be numerous instances in the remainder of the paper where we do the 
following: 

(1) Assume we have an MSP x for X,. 
(2) Construct some y = xt" > x. 

(3) Conclude that y < w from the fact that At,,(x) is shaded. 
(4) Find incompatible edges t,t' as in Fact 24 to conclude that y is also a 

singular point of Xw. 
(5) Obtain a contradiction with our first assumption. 

The previous technique will allow us to significantly pare down the possibilities 
for what x looks like for x an MSP. The following lemma is the first example of this 
strategy. 

Lemma 29. Let x < w be an MSP, and assume ta,b E R.(x, w), l(xta,b) = (x) + 1, 
and tc,d E ?a,b(x,w). Then ptx(a),pt,(b) ? Ac,d(x). 
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FIGURE 9 
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(2) 

(1) c> a, x(c) < x(a) (2) c < a, x(c) > x(a) 

FIGURE 10 

Proof. First consider the case where both pt (a), ptx(b) E Ac,d(x). 
Suppose there is a point ptx(f) in region A of Figure 9(1). Choose such an f as 

small as possible. Then we see that tc,b and ta,f are patch incompatible reflections 
for x' = xtb,dtf,d < w and l(x'ta,f) = l(x') + 1. By Fact 24, x' is then singular. 
This contradicts the fact that x is an MSP for w. 

Now suppose region A of Figure 9(1) is empty - this is shown in Figure 9(2). 
Then tc,b and ta,d are incompatible reflections for Xtb,d < w and l(Xtb,dta,d) = 

l(xtb,d) + 1. Since x < xtb,d, this contradicts the fact that x is an MSP for w. 
We now argue the case of ptX(b) E Ac,d(X) ptx(a). (The arguments for pt,(b) f 

Ac,d(x) 3 ptx(a) are parallel.) 
Clearly d > b and x(d) > x(b). There are four possibilities with regard to the 

position of pt (c). 

(1) c = a. 
We are in Case A.iii of the definition of 0. Hence, tc,d E Im ta,b, which is 
a contradiction. So this case cannot occur. 

(2) c > a, x(c) > x(a). 
This case cannot occur as it violates l(xta,b) = 1(x) + 1. 

(3) c > a, x(c) < x(a). 
This case is depicted in Figure 10(1). Suppose l(Xtb,dta,d) = l(Xtb,d) + 1. 
Then ta,d and tc,b are patch incompatible for Xtb,d < w. This contradicts 
the fact that x is an MSP for w. If l(xtb,dta,d) > l(xtb,d) + 1, then we can 

argue as in Figure 9(1) to obtain our contradiction. 
(4) c < a, x(c) > x(a). 

See Figure 10(2). This is analogous to the previous case. O 

Proposition 30 below gives us our first non-trivial restriction regarding the com- 
position of R(x, w). This proposition will greatly reduce the amount of work we 
need to do later on to determine possibilities for x. 

Proposition 30. Let x < w be an MSP. If t E 17(x, w), then l(xt) = l(x) + 1. 
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Proof. Suppose that t E R7(x, w) and l(xt) > l(x)+l. We will obtain a contradiction 
by following the strategy on page 3926. 

Let t = ta,c. Choose b as large as possible such that ptx(b) E Aa,c(x). Note that 

ta,b, tb,c E 1Z(x, w) and l(xtb,c) = (x) + 1. Since x is an MSP, we can invoke Fact 25 
to find a t,,f E ?b,(x, w). 

Suppose Aa,b(x) n Ae,f(X) = 0. Since ta,c E 7Z(x, w), Aa,c is shaded so tb,c E 

Z(Xta,b, w). Hence tb,c and t,f are incompatible for Xta,b < w and l(xta,btb,c) = 

l(xta,b) + 1. This contradicts x E maxsing(Xw). 
Otherwise, Ae,f overlaps both Aa,b and Ab,c, so, by Lemma 29, we are in one of 

the following two scenarios. 

(1) e = b. 
By choice of b, f ? Ab,c(x). (Note that f $ c.) So either f > c, x(f) < x(c) 
or f < c, x(f) > x(c) (the latter case is shown in Figure 11(1)). In either 
case, we can apply the Ell Lemma 27 to conclude that te,f E Im ?tb, . This 
contradicts the choice of te,. 

a 9 $>e A 
b,e @ B a 

f g l0 tb,f 

(1) (2) 

FIGURE 11 

(2) f = b. 
Since ta,c E Z(x, w), for te,f to be an element of ?b,c(x, w), we need e < a, 
x(e) < x(a) and d,,, = 0 for some point in each of regions A and B 
in Figure 11(2). But then te,b and tb,c are link incompatible for xta,b < 
w. Furthermore, by having chosen b as large as possible, we ensure that 
l(xta,btb,c) = I(xta,b) + 1. This contradicts x E maxsing(X,). 

This greatly simplifies our future investigations. We now use Proposition 26 and 
Lemma 9 to prove the following crucial lemmas describing the shading on d,,w. 

Lemma 31 (Cross Lemma). Let x < w be an MSP and suppose 1 < i < j < 
k < 1 < n such that fiijkl(x) = 2143. If tj,k E 7(x, w) and ti,l E ?j,k(x,w), then 

ti,k, tj,l E (x, w). 

Proof. We can visualize the situation as in Figure 12(1). Since ti,l E ?j,k(x,w), 
there is necessarily a point A in region A for which dx,w(A) = 1. Suppose ti,k V 
7g(x, w). Then there is a point D in region B such that dx,w(L) = 0. Then we can 
apply Lemma 9 (with a, / > 1, - = 1) and Proposition 30 to conclude that there 
is a point ptx(p) of mat(x) in region C (see Figure 12(2)). If we choose D to be as 
low as possible in our diagram, then dx,w,D > 1 (see Figure 12(3)). But then ti,l 
and tj,k are patch incompatible for xtp,k < w. This contradicts x E maxsing(Xw). 
Therefore ti,k E R7(x, w) and we can shade the entire region B. 

To shade the lower left corner, apply this argument to x-1 and w-1. O 
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FIGURE 13 

Lemma 32. If x < w is an MSP, then our diagram for the pair x, w does not 

a Y y 

contain any of the configurations in Figure 13 (regardless of whether or not these 

reflections are incompatible). 

Proof. The inadmissibility of these configurations is proved using the strategy on 
page 3926. We arrive at contradictions using Proposition 30 and Lemma 31. We 

Y P b 
a b c 

will just prove the case depicted in Figure 13(3) 

FIGURE 13 

Lemma 32. If x is an MSP for w, then our diagram for the pairx, w). Clearly, if 

(7.3)contain any of the configurations in Figure 13 (regardless of hether or not these 

reflectionsd t ar e (patch or link) incompatible reflections for xt This 

Proof. The inadmissibility of these configurations is proved u maxsing(Xg the strategy on 

So, to ensure that (7.3) does not hold, we need ptx(d) in region A of Figure 14(1) 

and pta) in region B3926. Here we arrive at contradictions using the possibilities that d Lem= a or = c. 
will just prove that (as is showndepicted in Figure 14(1)) Proposition 30 requires that x() x(b) 

and x(d) > x(:3). Clearly if d = a, then 5 : c and vice versa. Hence, by symmetry, 

Sinwe is an treat onlyr w the cases where exis c. These two cases are illustrated in Figures 

14(2) and 14(3). = 

For both cases, we canand td, are (patch or link) incompatible reflections nd t,,, to concludew. This 
wouldthat t, w). Then (xt) > ) +1, which contradicts Propo maxsing(Xtion 30. ). 

8. RESTRICTIONS ON X AND W 

Recall that and sure that (7.3) doe restrictions of x and w to those positions in A of Figure 14(, w) 
and pt(see Defin ition 13). In order to determincluding the possibilities that d = a or 6 we first 
prove the follas is showing necessary cond14()) Proposition 30 requires that ()MSP for w.(b) 

and x(d) > x(/). Clearly if d = a, then 6 $ c and vice versa. Hence, by symmetry, 
we can treat only the cases where 6 # c. These two cases are illustrated in Figures 
14(2) and 14(3). 

For both cases, we can apply the Cross Lemma 31 to td,3 and t,,, to conclude 
that td,y E R(x, w). Then l(Xtd,6) > 1(x) ? 1, which contradicts Proposition 30. W 

8. RESTRICTIONS ON x AND wi 

Recall that ii and ?ii are the restrictions of x and w to those positions in A (x, w) 
(see Definition 13). In order to determine the structure of maxsing(X,), we first 
prove the following necessary conditions on i for any msp x for w. 

Theorem 33. If x < w is an MSP, then x avoids the patterns 231,312 and 1234. 
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P 

(3) d < p 

Proof. By passing to inverses, it is enough to prove that x is 
or 312-avoiding. So choose a, b, c E A(x, w) with 1 < a < b 
flabc = 231. 

either 231-avoiding 
< c < n such that 

Case 1. Assume ta,b E R7(x, w). 

By definition of A(x, w), there exists a d E A(x, w) with tc,d E R(x, w). We'll 
assume that c < d as all cases where d < c are analogous to one of the cases we 
cover by transposing over the antidiagonal. Clearly Aa,b n Ac,d = 0- 

Since x is an MSP, there exists a ta,f E ?a,b(x, w). We can assume that 

(8.1) Aa,, n Ac,d $ 0 

or else ta,b and t,,,3 are (patch or link) incompatible for Xtc,d < w contradicting 
x E maxsing(Xw). There are two cases according to whether ta,b and t,,3 are link 
or patch incompatible. We only describe the arguments explicitly in the case of 
link incompatibility -the arguments are similar in the latter case. Also, we will 
argue only b = a as the case of 3 = a is analogous. 

By Proposition 30, there are three possibilities for the relative positions of ptx(d) 
and ptx(/). They are displayed in Figure 15. 

In the case of Figure 15(3), if the dotted transposition t ? 1Z(x, w), then ta,b 
and t,,3 are link incompatible for xtc,d < w. Otherwise, in all three cases, t E 
R(x, w) and ta,b, tb,c are link incompatible for xtc,f < w. This contradicts x E 

maxsing(X,). 

Case 2. Assume ta,b X 7Z(x, w). 

a 
a 

b 
c 
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* IA 
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Since a, b, c E A (x, w), we can find a, /, y such that t{a,a}, t{b,013} t{c,1} E R(X, w)). 

In light of Figure 16 and Proposition 30, we must have ptx(a) E RUB', ptx(/3) E 
D U D', and ptx(-y) E F U F' or else we can reduce to the previous case (of ta,b E 
JZ(x, w)). Furthermore, by symmetry we can assume ptx( y) E F'. That leaves 
four cases depending on whether ptx(a) E B, B' and whether ptx(!3) E D, D' as 
pictured in Figure 17. 

Configurations (1), (3), and (4) contradict Lemma 32. So consider the case 
of Figure 17(2). Since x is an MSP, there exists some td,6 E b,43(x, w). Since 

min(d,,,IA) = 0, one can see that Ad nAA,,a = 0. Hence, td,6 and tb,O are (patch 
or link) incompatible for Xt,,,a < w. 

This completes the proof that Y is 231- and 312-avoiding. 
Next we will show Y is 1234-avoiding. Suppose we have a < b < c < d with 

a, b, c, d ( =- (x, w) and flabcd(X) = 1234. We will obtain a contradiction. 

By Theorem 33, no points of mat(i) may occur in regions I or II of Figure 18(1). 
Since a, d E A(x, w), there exist b', c' such that t{a,b/}, t{cc,d} E R(x, w)). As x is 

an MSP, there also exists some t,,f E Labl (X, W). Using Proposition 30, it is easy to 
check that if 

(8.)b' AUBorc' OCUD or e4b' orf Zc', 

1 
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b 
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n 
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(1) a <a, p < b 
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then te,f and ta,b' are incompatible for Xtc',d < w. This contradicts x E maxsing(Xw). 
So, in particular, te,f = tb,,c, E Z(x, w). A typical (allowable) pair of positions for 
b' and c' is shown in Figure 18(2). 

We will assume that b and c were chosen initially such that ta,b, tb,c, tc,d E 

ZR(x, w) and ta,b E ?b,c(x, w). Suppose tb,c E?c,d(x, w). Then ta,b and (tb,c or tb,d) 

are link incompatible for xtc,d < w. This contradicts x E maxsing(Xw). 
So our diagram looks like that pictured in Figure 19(1) and we have ta,b E 

Eb,c(X, w), tb,c E c,d(x, w). Therefore, we can find a point in each of the regions U 
and V such that dX,w = 0. Choose the point in region U to be as low as possible. 
Choose the point in region V to be as far right as possible. Such points are shown 
in Figure 19(2). Apply Lemma 9 to the rectangle determined by these two points 
with ca, > 1 and y = 0. This, along with Proposition 30, implies that there is 
another point ptx(p) in either region P or Q. Without loss of generality, assume it 
is in region P. By having chosen the point in region U as low as possible, we find 
that tp,d E IR(x,w) (see Figure 19(3)). Hence, ta,b and tb,c are link incompatible 
for Xtp,d < w. This contradicts x e maxsing(Xw). O 

By Theorem 33, we see that if x E maxsing(Xw), then 

(8.3) = [k,...,1, k + 1,...,k + 1, k +1+ m,...,k +1 + 1] 

for some k, 1, m > 0. If two out of three of k, 1, m are 0, then i is strictly decreasing, 
so x < w implies that x = w. But then x cannot possibly be an MSP. So now we 
determine the possible values of k, m in Proposition 34 when 1 = 0 and the possible 
values of k, 1, m in Proposition 35 when k, 1, m > 0. In each proposition, we also 
determine what w must be to allow x to be singular. 

We know from Proposition 18 that x E maxsing(Xw) iff x E maxsing(Xjj). 
Hence, for the remainder of this section, we will only consider the case where x = x 
and w = w. 

8.1. Two decreasing sequences in x. 

Proposition 34. Let x E maxsing(X,) with x = x and w = w. Suppose that x 
consists of exactly two decreasing sequences: 

(8.4) x = [k,...,1, k +m,...,k + 1], 

for some k, m > 1. Then 

(1) k,m > 2 and 
(2) w= [k +m,k,...,2,k+m- 1,...,k + 1,1]. 

Proof. For brevity in the following, we use the convention that a, a, a' E [1,..., k] 
and 3, b,b' E [k + 1,...,k + m]. 
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FIGURE 21 

If k = 1 or m 1, then by Lemma 27, ,w) = 0. This contradicts 

Fact 25. Hence, we obtain , m > 2. 
We proceed in steps to prove the particular form for w given above. 

Step 1. tlki+1,tk,k+m e 1(x,w). 

Assume tk+w). We will obtain a contradiction. 

b b k+m 

(1) (2) (3) 

FIGURE 21 

If k = I or m = 1, then by Lemma 27, ?1,k+l(x,w) = 0. This contradicts 
Fact 25. Hence, we obtain k, m > 2. 

We proceed in steps to prove the particular form for w given above. 

Step 1. tl,k+ll, tk,k+m E R(X, W). 
Assume tl,k+l ~ IZ(x, w). We will obtain a contradiction. 

By Proposition 14, we can find a, P3 such that tl,p, ta,k+l E Z(x, w) (see 
Figure 20(1)). Choose a as large as possible and P as small as possible 
subject to this restriction. 

If tl,3 E ?a,k+l (x, w), then an application of the Cross Lemma 31 would 
offer the desired contradiction. So assume that this is not the case (i.e., 
assume dx,w > 2 on region R of Figure 20(1)). 

Since x is an MSP, by Fact 25, we can find some ta,b E ?1,:(x, w). Recall 
that we chose a as large as possible such that t,,k+l E 7Z(x, w). It follows 
then that a < a. Similarly, our choice of 3 as small as possible such that 

tl1, E 7(x, w), in conjunction with the Cross Lemma 31 and Ell Lemma 27, 
implies that b > P. Suppose a = a. This is depicted in Figure 20(2). 
We see that tk+l,f, and tl,b are patch incompatible for Xt,,k+l < w. This 
contradicts x E maxsing(X,). So we may assume a < a as in Figure 20(3). 

Suppose that dx,, > 2 on region A. Then ta,b and tl, are patch in- 
compatible for xta,k+l < w. This contradicts x E maxsing(X,). So there 
is at least one point in region A for which dx,w has value 1. Now we can 
apply the Cross Lemma 31 to the patch incompatible pair t,,k+l, ta,b to 
conclude that dx,w > 1 on regions B and C. We display this knowledge in 
Figure 21(1). 
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FIGURE 22. We have displayed the case of a < k, but the argument 
holds for a = k too. 

Now suppose that there is a point in region D for which d,,, = 1. Then 

tk+l,/3 and tl,b are patch incompatible reflections for xt,,k+l < w. This 
contradicts x E maxsing(Xw). Since, by construction, ta,b E ?1,(x, w), 
the only possibility left is that min(dx,w,E) = 1 (as in Figure 21(2)). We 
can now apply the Cross Lemma 31 to tl,b and ta,k+l to conclude that 

dx,w > 1 on region F. Hence tl,k+l E 7Z(x, w) as claimed. 
The proof that tk,k+m E RZ(x, w) is entirely analogous when one uses 

d', from (5.6). 
Step 2. ta,b E 1(x, w) for all 1 < a < k and k + 1 < b < k + m. 

By the previous step, we know that we can shade rectangles I and II in 
Figure 21(3). For every a, b, by the definition of A(x, w), we can shade the 
corresponding regions U and V, respectively. 

Step 3. dx,w < 1 on region A in Figure 22(1). 
Suppose, on the contrary, that dx,w > 2 for some point in region A. 

Since dx,w is non-decreasing as we move down or left in region A, we can 
assume that d,w (A) > 2 for A = (k, k + 1). But then there must be some 
a, b with 1 < a < k and k+1 < b < k+m with either a < k or b < k+m and 

ta,b E ?1,k+1(X, ) (see Figure 22(2)). Note that min(dx,wIBuCuD) = 1 by 
choice of ta,b. If min(dx,wlB) = 1, then tk,k+l and tl,b are patch incompati- 
ble for Xtl,k+m < w (see Figure 22(3)). This contradicts x E maxsing(XW). 
So we can assume dx,wlB > 2. Since min(dx,wIBucuD) = 1, and dx,w is 

non-decreasing in region A as we move down or left, we can now assume 
that min(dx,wlc) = 1. But then tl,b and ta,k are patching incompatible for 
Xtk,k+l w. This contradicts xEmaxsing(Xw). So dx,wlA <1 as claimed. 

Step 4. By the previous step, there is at most one point of mat(w) in region A. 
But as w > x, x = x and w = w, this fixes the remaining points and we 
have w = [k + m, k,..., 2, k + m- 1,..., k + 1,1], as claimed. 

8.2. Three decreasing sequences in x. We repeat the task of the previous sec- 
tion when x consists of three decreasing sequences rather than two. 

Proposition 35. Let x E maxsing(Xw) with x = x and w = w. Suppose that x 
consists of exactly three decreasing subsequences: 

(8.5) x = [k,...,, k + 1,...,k + 1, k + + m,...,k + + 1], 

for some k, 1, m > 1. Then 
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FIGURE 23 

(1) I > 2, 
(2) l=2ifk>1 orm>1, 
(3) (shown in Figure 29(2)) 

w = [k+ l,k,..., 2, k +1 + m, k+ - 1,...,k + 2, 

1, k + + m - 1,...,k + 1 + 1, k + 1]. 

Proof. Again, we'll assume throughout this proof that a, a', a E [1,..., k], b, b', / e 
[k+ 1,..., k + l] and c, y E [k+1 + ?1,..., k +1 + m]. We now prove a series of claims 
elucidating the structure of 7g(x, w). 
Step 1. There exist a, b, c such that ta,b, tb,c E 7Z(x, w). 

Suppose there is no such triple of indices. Then by the definition of A(x, w), 
for given a, c there exist b, b' (b $ b') such that ta,b, tbc,, E 7Z(x, w). By the 
Ell Lemma 27, along with the assumptions that x is an MSP and that such 
triples do not exist, we can find a 7 a and Pf 7 b' such that t,,, E Ea,b(x, w). 
But then ta,b and to,, are patch incompatible for xtb,,c < w. 

Step 2. If ta,b, tb,c E IR(x, w), then ta,b E ?b,c(x, w). 
Suppose, on the contrary, that ta,b E Im q5t c. Then d,,, > 1 on either all 
of region A or all of region B in Figure 23(1). 

Assume that dx,w > 1 on region A. Now, since x is an MSP, by Fact 25 
there exists tp,q E ?b, (x, w). We now consider the two possibilities for the 
relative positions of tp,q and tb,c. 

Suppose that tp,q and tb,c are link incompatible -i.e., we have q = b 

(Figure 23(2)). For tp,q to be link incompatible with tb,,, we need p > 
a (as depicted in Figure 23(2)) since we are assuming min(dx,wlA) > 1. 
Additionally, as tp,q E Eb,c(x,w), d,w must have value 0 for at least one 

point on each of regions C and D. Thus tp,b and tb,c are link incompatible 
for Xta,b < w. 

On the other hand, tp,q and tb,c may be patch incompatible. Then there 
are four possibilities for the relative positions of ptx(p), ptx(b), ptx(q) and 
ptx(c) depending on whether p < b and whether q < c (see Figure 24). In 
each situation, tp,q and tb,c are patch incompatible for Xta,b < w. 

We have obtained a contradiction of x E maxsing(Xw) for every scenario 
in which dx,w > 1 on region A. Arguing similarly if dx,w > 1 on region B, 
we conclude that ta,b E ?b,c(X, w). 

Step 3. Given /, there exist a, y such that ta,,, t, 7Z(x, w). 
By Step 1, there exist a, b, c such that ta,b, tb,c CE R(x, w). If b = 3, then we 
are done - so assume not. We can at least find a q with t{/,q} E 7R(x, w). 
Without loss of generality, assume q = y for some -y > P. We split into cases 
according to whether y < c, -y = c or y > c. These are depicted in Figure 25. 
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FIGURE 25. We have displayed the case of P < b, but the proof of 
Step 3 also holds for P > b. 
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FIGURE 26 

Note that by the previous step, ta,b E Eb,c(, w), so min(dx,wBl) = 0. In 

addition, if min(dx,wlA) _ 1, then ta,i3 E 7R(z,w) as desired. So in the 
following arguments (and Figure 25), we assume min(dx,wlA) = 0 and 
derive a contradiction of x E maxsing(Xw). 

Assume y > c. If min(dx,wlc) > 2, then ta,b,tb,c are link incompatible 
for xt,3, <_ w. Otherwise, by the Cross Lemma 31, tp,c E R(x,w). Then 
tab, tb,c are link incompatible for xtp3, <w. 

If - < c, then t,c E 7R(x, w) and we get a contradiction as above. 
Step 4. For every a,3, -y, we have t,~,3 t ?,y E R(x, w). 

Suppose t,,,3 R(x, w). By the definition of A(x, w) and the fact that 
x = x, we know that there exists b such that ta,b E R(x, w). Now we can 
apply the previous step to obtain a c such that tb,c E ?(x, w). Note that by 
Step 2, ta,b and tb,c are link incompatible. So our situation is as depicted 
as in Figure 26(1). 

Using the logic of the previous step, we see that min(dx,wlA) = 0 con- 
tradicts x E maxsing(Xw). Hence ta,, E IR(x, w) as desired. 

The argument for showing t,.- E R7(x, w) is analogous. 

a 

b 

P 

c 

q 
(4) p > b, q > c 

(3) < c 
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FIGURE 27 

Step 5. dx,w = 1 in the shaded region of Figure 27(1). 
By Steps 2, 3 and 4, we see dx,w > 1 on the shaded region of Figure 27(1). 

We will show d,,, < 1 also. If a =: a and b - /3, then ta,b, tc,3 E l (x, w) 
implies t,,f e ?a,b(x,w). By Step 4, tb,c E ?a,b(x,W) for some c (see 
Figure 26(2). 

Suppose t,, f ( ?a,b(x,w) -i.e., d,,, > 2 on region A. Then ta,b and 

tb,c are link incompatible for xt,, < w. 
A similar argument can be used to show that if b : f3 and c 7 7y, then 

tb,c, t,y E 7g(x, w) implies t,, c Eb,c(x,w). The claim of d,,, < 1 then 
follows by inspection from these two facts and the given explicit form of x. 

Step 6. Condition (1) in Proposition 35 holds, namely 1 > 2. 
By Step 2, tk,k+l and tk+l,k+l+m are link incompatible. This implies 

that min(dx,WlA) = 0. Similarly, min(dx,wlB) = 0. It then follows from our 
explicit description of x that the values of w(i) for i = 1, k + 1 are as shown 
in Figure 27(2). Arguing with d' w (see (5.6)) and region B, we see that 

w(i) for i = k + 1, k + I + m is as shown in the same figure. But this means 
that w-1(k + 1) = 1 and w-l(k + 1) = k + + m. This can only happen if 

> 1. 
Step 7. w is as stated in condition (3). 

Step 5 tells us that we can conclude that dx,w = 1 on all shaded areas of 
Figure 27. Therefore, w(i) = k + 2- i for 2 < i < k. A similar argument to 
that in Step 5 shows that w(i) = 2(k+l)+m-i for k+l+l < i < k+l+m. 
So we need only investigate the values of w(i) for k + 1 < i < k + 1. To 
do this, assume that w(i) = x(i) for k + 1 < i < j for some j with 
k + 1 < j < k + - 1. Then, as in Figure 28(1), we see that dx,w = 0 on 
region B. 

So, tk,k+1 and tk+l,j+2 are link incompatible for Xtj+2,k+l+m < w. This 
contradicts x E maxsing(Xw). Hence w(i) = x(i) for all i with k + 1 < i < 
k+l. So 

w = [k + 1, k,..., 2, k + 1 + m,k + 1 - 1,...,k + 2, 

1, k+l +m- 1,...,k++ 1, + 1,k+ ], 

as desired. 
Step 8. Condition (2) in Proposition 35 holds. 
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We need to show that if > 2, then km 1. So assume k > 1. 

By Steps 4 and 5, and 2,+2 are patch incompatible reflections for 

I k+l 

j tk+2 k+l+m (see Figure 28(2)). This contradicts x masing(X 

k+l 
k+l+J 
k+l+m 

(1) (2) 

FIGURE 28 

We need to show that if 1 > 2, then k,m = 1. So assume k > 1. 
By Steps 4 and 5, tl,k+l and t2,k+2 are patch incompatible reflections for 

Xtk+l,k+l+m ? w (see Figure 28(2)). This contradicts x E maxsing(X,). 
The argument showing that m = 1 is analogous. 

This completes the proof of Proposition 35. [ 

9. MAXIMAL SINGULARITY OF CANDIDATES 

We now finish the proof of Theorem 1 by showing that the restrictions we have 
discovered for x in Propositions 34 and 35 are sufficient to show that these points 
correspond to MSP's in the appropriate Schubert variety. This task consists of two 
steps: 

(1) Show that the points x are singular points. 
(2) Show that any cover of x that is still below w is a smooth point. 

So that we can describe maxsing(X,) succinctly, we introduce the following 
notation: 

Definition 36. For k, m > 2, define 

(9.1) Xk,m = [k,..., k + m,...,k + 1], 

(9.2) Wk,m = [k + m,k,...,2, k + m- 1,...,k +1]. 

For k, m > 1 and 1 > 2, define 

(9.3) Xk,l,m = [k..., k+,..., k + , k + + m,...,k + + ], 

Wk,l,m = [k + , k,...,2, k + 1 + m,k + - 1,..., k + 2, 
(9.4) 1, k+l +m-1,...,k + 1, k + 1]. 

Theorem 37 (Rephrasing Theorem 1). x is an MSP of Xw if and only if 

(1) t E 7(x, w) implies l(xt) = 1(x) + 1. 
(2) (a) For some k, m > 2, we have X = Xk,m and w = Wk,m 

or 
(b) For some k, m > 1, 1 = 2 or k = m = 1, > 2, we have x = Xk,l,m and 

W = Wk,l,m 
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FIGURE 29 

Proof. Proposition 30 tells us that condition (1) is necessary. Propositions 34 and 
35 tell us that conditions (2a) and (2b) are necessary. So all we need to show is 
sufficiency. 

Let t be a reflection such that x < y = xt < w. As lt is injective, to calculate 
#R7(y, w) from 7Z(x, w) we need only count how many reflections in R(x, w) are 
not in the image of bt. Note by Proposition 18 that #7R(, w) = #7R(, w) and 
l(w) - (x) = (w)-I(x). 

Consider first the case shown in Figure 29(1) of two decreasing sequences for 
x = Xk,m. Note that 

(9.5) l(wk,m)= ()+ ()+k+m-1, 

(9.6) I(k,m) =f + ) 

(9.7) #1(x, w) = k m and 

(9.8) l(w) - l(x) - #Z(x, w) = k + m - km - 1. 

Since k, m > 2, (9.8) is negative. So by Theorem 11, ex is a singular point of Xw. 
To prove that it is a maximal singular point, we consider some ta,b E R(x, w) 

and let y = xta,b. 
Then, viewing Figure 30(1), it is easily seen that #R(y, w) = (k - 1) + (m - 1) = 

k + m - 2. Since l(y) = l(x) + 1, by Theorem 11 and (9.8), y is a smooth point of 
Xw. Since y was chosen as an arbitrary cover of x, x is an MSP for w. 

Now we prove the case shown in Figure 29(2) of three decreasing sequences for 
x = Xk,l,m. Note that 

(9.9) l(Wk,l,m)= () + + ) 2 + k +rm + 2(-2) + 1, 

(9.10) l(Xk,l,m= ()+ (2) + (2)' 
(9.11) #R(x, w) = l(k + m) and 

(9.12) l(w) -l(x) - #R(x, ) = (l- 1) 1 + l-2 -k-m 
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Since k, m > 1 and I > 2, (9.12) is negative. So by Theorem 11, x is a singular 
point of X,,. To prove it is an MSP for w, as above we consider some ta,b E '1(x, w) 
and let y = xta,b. We have l(w) - 1(y) = k + m + 2(1 - 2). 

Viewing Figure 30(2), it is clear that #Z(y, w) = (k - 1) + (1 - 1) + m(l - 1). 
If I = 2, then #R(y,w) = k + m = (w) - (y). If I > 2, then by (2) of 

Proposition 35, we have that k = m = 1, and #7Z(y,w) = 2( - 1) = l(w) - I(y). 
So, in either case, y is a smooth point of Xw. 

So in both cases, x is an MSP of Xw as claimed. O 

This completes the proof of Theorem 37. It is easy to check that the above 
formulation is equivalent to Theorem 1. (Note, however, that the values of k, 1, m 
in the statement of Theorem 37 differ from those used in Theorem 1.) 

10. LAKSHMIBAI-SANDHYA CONJECTURE 

Let w = [w(1),...,w(n)] E Gn. Define Ew to be the set of all x = [x(1),..., 
x(n)] satisfying the following conditions: 

(1) There exist i < j < k < I and i' < j' < k' < I' such that (as sets) 

{w(i), w(j), w(k),w()} = {x(i'), x(j'), x(k'),x(l')}. 

(2) One of the following holds: 
(a) flijkl(w) = 3412 and flij,kll,(x)) = 1324. 

(b) flijkl(w) = 4231 and fi/,j,kt,(x) = 2143. 

(3) Using the notation of Section 3, set 

w = unflikl(fi,j'k'l',(x)) and 

= unfi,j/k,(fik())- 

Then 

(10.1) w < x < x < w. 

Theorem 38 (Conjecture in [21]). For w cE n, the singular locus of Xw is equal 
to UxXx, where x runs over the maximal elements of Ew in Bruhat order. 
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FIGURE 31. (1) w, w; (2) x, w; (3) X, w. 

Proof. That the points constructed by Lakshmibai and Sandhya are singular was 
first proved by Gasharov [17]. We refer the reader there for a proof of this direction 
of the conjecture. Independent proofs can also be found in Manivel [27] and Kassel- 
Lascoux-Reutenauer [19]. 

We only give the argument that maxsing(Xw) C UXEEW Xx for singular points 
of the type 4231 (i.e., those described in case (1) of Theorem 1). The argument for 
singular points of type 3412 and 45312 is analogous. 

Fix some x E maxsing(Xw) (of type 4231). We will choose indices i, j, k, I and 
i', j', k', I' as described in the definition of E, and show that (10.1) is satisfied for 
our choice of indices. So, using the notation of Theorem 1, let 

(10.2) al < 0i < P2 < *' < /Ak-1 < O2 < O3 < *' < am < /3k 

correspond to a type 4231 pattern in w. Then set 

(10.3) i = ac, j =i1, k = am-i and 1 = pk, 

(10.4) i'=a, j= /k-1, k' =a2 and I' = k 

Now, recall from Lemma 3 that u < v if and only if du,v is everywhere non-negative. 
But then (10.1) follows from Figure 31 along with the observation that du,v < 1 in 
each of these diagrams. 

D 

11. KAZHDAN-LUSZTIG POLYNOMIALS AT ELEMENTS OF maxsing(X,) 

The Kazhdan-Lusztig polynomials associated to SL(n) are indexed by two per- 
mutations x, w. Through work of Kazhdan and Lusztig [20], Beilinson-Bernstein [1] 
and Brylinski-Kashiwara [11], they have important interpretations in the context 
of Verma modules. In addition, these polynomials are related to the singular loci 
of Schubert varieties by a result of Kazhdan and Lusztig [20] that the Kazhdan- 
Lusztig polynomial Px,w = 1 if and only if ex is a smooth point of Xw C SL(n)/B. 
For further properties of these polynomials, see [18]. 

Lascoux and Schiitzenberger [24], Zelevinskil [31], Lascoux [23], Brenti [6, 7, 8] 
and others [5, 9, 28] all calculate explicit formulas for these polynomials in specific 
cases. In this section, we compute PX,W when x E maxsing(Xw). We note that 
Theorem 42(3) is proved in [29] and Theorem 42(2) is proved in [24], but both are 
only proved in the case where x = x and w = w. 
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A result of Polo, [28], states that every polynomial in N[q] with constant term 1 
can be realized as a Kazhdan-Lusztig polynomial in 6, for some n. However, as 
Theorem 42 shows, the Kazhdan-Lusztig polynomials at elements of maxsing(X,) 
are of very limited forms. 

For pairs of permutations x, w E en, we can define the Kazhdan-Lusztig poly- 
nomials by the following properties: 

(1) Px,w = 0 if x y~ w. 
(2) Px,w = 1 if x < w and l(w) - (x) < 2. 

(3) deg(Px,w) < 2(l(w) - (x) - 1). 
(4) If s E S such that ws < w, then 

(11.1) Px,w = qcP,, + ql-Pxs, s - i(z, ws)q(l(w)-(z))/2p, 
x<z<ws,zs<z 

where ,u(z, ws) is the coefficient of q(l(ws)-l(z)-1)/2 in Pz,wS and c = 1 if 
xs < x, c = 0 if xs > x. 

Lemma 39. If i A((x, w), then Px,w = Pxz, W 

Proof. Fix x < w and pick some i A(x, w). We know by Proposition 14 that 
x(i) = w(i). By Corollary 21, this implies that if x < z < w for some z, then 
z(i) (i)(i) = w(i). 

With these facts, the result then follows easily by induction on l(w) using (11.1). 
(Note that our base case of l(w) = 1 is trivial.) O 

Corollary 40. Py,W = Px,w. 

For reference we state the following fact [18, Cor. 7.14]: 

Fact 41. For s, s' E S, ws < w, s'w < w, then Px,w = Pxs,, = Ps'x,w 

We are now ready to calculate Px,w for x E maxsing(X,). By Theorem 37 
and Corollary 40, it is enough to calculate Px,w for the pairs Xk,m, Wk,m and 

Xk,l,m, Wk,l,m- 

Theorem 42. All Kazhdan-Lusztig polynomials at maximal singular points: 

(1) 4231-type: For k, m > 2, 

Pk,m,Wk,m = 1 + q + . + qmin(k-l,m-l) 

(2) 3412-type: For k, m > 1, 

Pxk,2,m,Wk,2,m 1+ q. 

(3) 45312-type: For 1 > 2, 

Px',l, ,w1,,1 
= 1 + q1 

Proof. We refer the reader to Manivel [26] or Cortez [14] for independent proofs of 
this theorem. However, in order to illustrate the utility of our diagrams, we include 
a proof for the 45312-type polynomials here (the other types are analogous). 

Let x and w be x1,1,1 and Wl,l,1 respectively. We apply induction on 1. The case 
of I = 2 is covered by the 3412-type case, so we assume 1 > 3. 

In Figure 32, we depict the pairs x, w and x, ws2 and xs2, ws2. We claim 
that the first two terms in (11.1) contribute (1 + q)(1 + ql-2). First consider 
the pair x, ws2. Since ws2sl < ws2, by the induction hypothesis, Corollary 16 
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(1) x,w (2) x,ws2 (3) xs,ws2 

FIGURE 32 

and Lemma 39, we see that Px,ws2 = P,Xw,S = 1 + q-2. Now consider the 
pair xs2, ws2. Since siws2 < ws2 and ws2s1 < ws2, it follows that Pxs2,w2 = 

Ps81xs821,ws2 But since siss821 = xs1, we get that PxS2,ws2 = 1 + q'-2 also. Incor- 

porating this information into (11.1), we can write 

(11.2) PXW= 1 + ql- + q + q-1 - E a (z, ws2)q 2 Pxz. 
x<z<ws 

ZS2 <Z 

Now we check which z will appear in the sum in (11.2). First note that xs1 is 
the unique MSP for ws2. By induction, PXs1,ws2 = 1 + ql-2. By Fact 41, Pe,ws2 = 

Pasl,ws2. Hence, the only z such that l(z) < l(ws2)-1 and deg(Pz,Ws2) is maximized 
is z = xsl. However, xs1S2 > xs1, so xs1 does not appear in the sum. So the only 
possible terms in the sum are those with l(z) = l(ws2)- 1. From Figure 32(2), 
we see that z = ws2s3 is the only z satisfying both this length condition and 
zs2 < z. Using Fact 41, Lemma 39 and the induction hypothesis, one can check that 

Px,ws283 = 1 + ql-3. Hence, the sum in (11.2) contributes -q - ql-2. Simplifying, 
we see that Px,w = 1 + ql-1 as claimed. a 

Remark 43. In related work, Brion and Polo [10] compute the singular locus and 
Kazhdan-Lusztig polynomials for Schubert varieties associated to certain parabolic 
subgroups of connected semisimple algebraic groups. 

12. EXAMPLES CALCULATING maxsing(Xw) 

Example 44. Using Theorem 1, in Figure 33 we compute the singular locus 

(12.1) maxsing(Xw) = X[48376512] U X[64387512] U X[46587312] U X[68174325] 

of Xw where w = [6,8,4,7,5,3,1,2]. 

Remark 45. The cardinality of the set maxsing(Xw) may be O(n4). For example, 

#maxsing(Xw) = (n/2) when w = [n/2 + 1,..., n, 1,..., n/2] and n is even. 

Example 46. Using a computer it is easy to calculate, for example, that 
# maxsing(Xw) = 29 for 

w = [17,6,2,15,12,11,3,8,16,7,14,5, 13,9, 10,1,4]. 
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(1) x = [4,8,3,7,6,5,1,2] (2) x = [6,4,3,8,7,5,1,2] (3) x = [4,6,5,8,7,3,1,2] (4) x = [6,8,1,7,4,3,2,5] 

FIGURE 33 

13. PATTERNS INDEXING maxsing(XW) 

Which 4231 or 3412 patterns lead to elements in maxsing(Xw)? We can describe 

2 0 

these patterns by taking all 4231 and 3412 patterns in w and removing certain 
"useless patterns" contained in larger patterns of length 5 or 6. For example, if 

w = [52341], he paern 5241 will be useless since he shaded region i defines is 

not empty. We describe the useless patterns in the following way. For each pattern 

of length 5 or in (13.1), remove he corresponding doed paern. 

(354i2) (435i2) (45i32) (452i3) 

70 0 

(13. [4,,3,7,6,5,1,2 (2) [6,4,3,8,7,5,1,2i) (3) [4,6,5,8,7,3,1,2 (532) x [6,8,,74,3,2,5 

FIGURE 33 

13. PATTERNS INDEXING maxsing(X,) 

(6Which 4231 or 3412 patterns lead to elements in maxsing(X)? We can describe 

these patterns by taking all 4231 and 3412 patterns in w and removing certain 

useless patterns" containeing "usefullarger patterns of length 5 or 6. For examponent in 
[5234maxsing(X). For example, i5241 will be useless since[7432651], the shaded region it defionly ones is 

element namely x = [4321765] and this element would be indexed by 7251. 

This empty. We orrescribe the useless patterns to the followshape ing way. For each pattern1(1). 
of length 5 or 6 in (13.1), remove know the distributiresponding of the various sizes ofttern. 

(13.1) (?34i) (52431) (~3iai) (5342i) (54231) 
(635241) (5634ii) (~264iA) (631i52) 

Each of the remaining "useful patterns" index a unique component in 
maxsing(X,). For example, if w = [7432651], then maxsing(X,) has only one 
element namely x = [4321765] and this element would be indexed by 7251. 
This example corresponds to the shape in Figure 1(1). 

It would be interesting to know the distribution of the various sizes of 
maxsing(Xw) for all w E on for large n. 
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