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Abstract

We use Gelfand-Tsetlin diagrams to write dothve weight multiplicity function for the Lie
algebras(; C (type A;_1) as a single partition function. This allows us to apply known results about
partition functions to derive interesting properties of the weight diagrams. We relate this description
to that of the Duistermaat—Heckman measure frgmectic geometry, which gives a large-scale
limit way to look at multiplicity diagrams. We also provide an explanation for why the weight
polynomials in the boundary regions of the weight diagrams exhibit a number of linear factors. Using
symplectic geometry, we provhat the partition of th@eermutahedron intdomains of polynomiality
of the Duistermaat—Heckman function is the same as that for the weight multiplicity function, and
give an elementary proof of this fef4C (A3).

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

For a long time there has been a lot of interest, both in mathematics and physics,
in finding ways to determine with what multiplicity a weight appears in the weight
space decomposition of a finite-dimensional irreducible representation of a semisimple
Lie algebra. Although there is a multitude fafrmulas to compw& these multiplicities,
involving partition functions (Kostant’'s formula), recursions (Freudenthal’s formula),
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counting paths (Littelmann’s formula), this is still a computationally hard problem. For
type A (SLC, GLiC, SU(k)), these multiplicities are known to be the Kostka numbers,
which express the Schur symmetric functions in terms of the monomial symmetric
functions.

Here we explore the structure of the weight diagrams in t¢paot from a symmetric
functions perspective, but using an array of tools from combinatorics, convex geometry and
symplectic geometry, such as Gelfand—Tsediagrams, Kostant's multiplicity formula,
and the so-called “Quantization Commutes with Reduction” Theorem. We describe how
the weight diagrams are partitioned into dmins of polynomiality, andhow this is related
to the Duistermaat—Heckman function studied by symplectic geometers.

After a brief reminder about the structure of the Lie algedyf&, we introduce our main
tools, Gelfand—Tsetlin diagrams and partitifunctions. Gelfand—Tsetlin theory provides
a way of computing weight multiplicities by coting certain combinatrial diagrams, or
equivalently, by counting the number of integer lattice points inside certain polytopes. We
will use this and some notions from linear and integer programming to reduce this counting
problem to evaluating a single partition function.

Theorem 2.1. For everyk, we can find integer matrice; and B, such that the multipli-
city function fors[; C can be written as

m(B) = b5, (Bk (g))

Expressing the multiplicities as a single partition function allows us to use general facts
about partition functions and thethamber complexes to derive interesting properties of
the weight diagrams. For example, thailtiplicities have the following polynomiality

property.

Theorem 5.1. There is a chamber compléX®) on which the weight multiplicity function
is determined by polynomials of degigg?) in the 8;, with coefficients of degre@,?) in
theA.j.

From this theorem we can deduce a pointwise scaling property (i.e., forifizedg).

This property (Corollary 5.2) was known already in the context of symmetric function
theory, where it was proved using a fermionic formula for the Kostka—Foulkes polynomials
(see [20]). It shows that although the Gelfl-Tsetlin polytopes are not always integral
polytopes [24], their Ehrhart quasipolynomials are in fact always polynomials.

The partition of the weight diagram intts domains of polynomiality can be described
explicitly. The convex hull of a weight diagram is a permutahedron. There is in symplectic
geometry a function on the permutahedron, called the Duistermaat—Heckman function,
that approximates the weight multiplicitieadhis known to be piecewise polynomial. Its
domains of polynomiality are ceex subpolytopes of the peutahedron, and there is
an explicit description of the partition in terms of walls separating the domains. Using
known results on quantization and reductidrspmplectic manifolds, we can prove that
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the Duistermaat—Heckman function and the weight multiplicity function give rise to the
same partition of the permutahedron.

Theorem 3.2. The partitions of the permutahedron far(k) (or s, C) into its domains of
polynomiality for the weight multiplicities and for the Duistermaat—Heckman measure are
the same. Namely, the walls are determined by convex hulls of thectomaW - o (1))
whereo € &, and W is any parabolic subgroup o&; generated by all reflections
corresponding to roots orthogonal to a conjugate of a fundamental weight.

In Kostant’s multiplicity formula, multiplicities are expressed as a sum of partition
functions evaluated at! points shifted by a factor depending on the choice of a positive
root system. We can take advantage of the apparent lack of symmetry of Kostant’s
multiplicity formula to find inteesting factorization patterns in the weight polynomials
of the boundary regions of the weight diagrams.

Theorem 6.2. Let R be a domain of polynomiality for the weight diagram of the
irreducible representation aff; C with highest weighk, and pg be its weight polynomial.
Suppose thaR has a facet lying on the boundary of the permutahedronmféhat has
6(wj) as its normal vector, for somee &;. If y = y (1) is the defining equation of the
hyperplane supporting that facet, thex is divisible by thej (k — j) — 1 linear factors
y+Ly+2,..,y+jk—jH—Lory—1y—2 ...,y —jlk—j)+1

The main tool for proving this theorem is a family of hyperplane arrangements,
called Kostant arrangements, on whose regions we have different polynomials giving the
multiplicities. The Kostant arrangement also provides a method for finding linear factors in
the difference between the weight polynomiafi$wo adjacent regions. A generalization of
the Kostant arrangements is also essential to the proof of Theorem 5.1, which establishes
that although in general we get quasipolynomials in the chambers of the complex
associated to a vector partition function, get polynomials for the weight multiplicity
function in typeA.

Theorem 6.5. Let R1 and R» be two adjacent top-dimeional domains of polynomiality
of the permutahedron for a generic dominant weighof s[;C, and suppose that the
normal to their touching facets is in the directioriw;) for someo € &;. If p1 and p»
are the weight polynomials a@t; and Ry, andy is the linear functional defining the wall
separating them, then the jump — p> either vanishes or has thgk — j) — 1 linear
factors

(y=—s"+1).(y—s +2),....vse.. (¥ +st=2), (y +s7 - 1)

for some integers—, sT > 0 satisfying

sT+sT=jk— ).



254 S. Billey et al. / Journal of Algebra 278 (2004) 251-293

Similar factorization phenomena werecently observed to hold for general vector
partition functions by Szenes and Vergne [31].

Finally, we explicitly compute the chamber complex fdi, and find it is not
optimal, but that we can glue together parts of it to obtain a simpler complex. We can
deduce symbolically from the form of this complex that the optimal partitions of the
permutahedron foAz under the weights and the Duistermaat—Heckman measure are the
same. Computing the chamber complex Agyis nontrivial because of the complexity of
the arrangement. To the best of our knowledfese computations for generic dominant
weights ofA3 have not been done. A study was done by Guillemin, Lerman and Sternberg
in [14] for some of the degenerate cases whédras a nontrivial stabilizer. The number of
domains of polynomiality turns out to be signifie¢hrarger than they aginally suspected.

1.1. The Lie algebral;C (type Ax—1)

The simple Lie algebral; C is the subalgebra gff, C = End(C¥) consisting of traceless
k x k matrices overC. We will take as its Cartan subalgelyats subspace of traceless
diagonal matrices. The roots and weights live in the diiadf b, which can be identified
with the subspace; + - - - + xx = 0 of R*. The roots arde; —e;: 1<i # j <k}, and we
will choose the positive ones to b, = {e; —ej: 1 <i < j <k}. The simple roots are
thena; = e; —e;11, for 1 <i <k — 1, and for these simple roots, the fundamental weights
are

1
o= k—ik—i . k—i—i—i.. - 1<i<k-L (1)

i times k—i times

The fundamental weights are defined such tpatw;) = §;;, where(-,-) is the usual
dot product. The integral span of the simple roots and the fundamental weights are the
root lattice A and the weight latticely respectively. The root lattice is a finite index
sublattice of the weight lattice, with indéx— 1.

For our choice of positive roots,

1 = 1
5:5Za:jZ:lwk=E(k—1,k—3,...,—(k—3),—(k—1)). 2)

aeAy

The Weyl group forsl;C is the symmetric groupgs; acting on{es, ..., e} (i.e.,
o(ei) = es(;)), and with the choice of positive roots we made, the fundamental Weyl
chamber will beCo = {(A1, ..., 4): YF_;A; =0andiry > --- > ix}. The action of the
Weyl group preserves the root and weight lattices. Way| orbitof a weighta is the set
Sk - A ={o(A): o € &}. We refer to the convex hull o, - A as thepermutahedron
associated to.. Weights lying in the fundamental Weyl chamber are calliedninant
and we will call elements of the Weyl orbits of the fundamentals weigbtgugates of
fundamental weights

The finite dimensional representationss¢fC are indexed by the dominant weights
Aw N Co, and for a given dominant weight there is a unique irreducible representation
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o5k C — gl(Vy) with highest weighti, up to isomorphism. Details about their
construction are well-known and can be found in [10] or [11], for example. We have the
weight space decomposition according to the actio of

Vi =PV 3)
p

The weights of this representation (thgse for which (V) g # 0) are finite in number,
and they can be characterized as follonse(§18]): they are exactly the poingsof the
weight lattice Ay that lie within the convex hull of the orbit of under the Weyl group
action, denoted cori®; - A), and such that — g lies in the root lattice. Hence

Vi = @ (Vi)p- (4)

Be(r+AR)NCONMUS-A)

The multiplicity m, (8) of the weightg in V, is the dimension otVA)ﬁ, and all the
conjugates o8 underS; have the same multiplicity. Theeight diagranof V, consists
of the weights ofV, (as a subset afi ) together with the data of their multiplicities.

There are several ways to compute weight multiplicities. An important one is Kostant’s
multiplicity formula [21], which can be deduced from Weyl's character formula (see
[18,29]). We first need to define the Kostant partition function given a choice of positive
root systema_:

K() = H(ka)aeA+ e Nl4+; Z koo = v}

aeA

: (5)

i.e., K (v) is the number of ways thate h* can be written as a sum of positive roots.
Kostant's multiplicity formula [21] is then

m(B)= Y (D" VK (c(rh+8)— (B+35)), 6)

oeBy

wherel(o) is the number of inversions. Kostant's partition function and multiplicity
formula extend to all complex semisimple Lie algebras. See [18] for more details.

1.2. Gelfand-Tsetlin diagrams

Gelfand-Tsetlin diagrams were introduced by Gelfand and Tsetlin [12] as a way to
index the one-dimensional subspaceshef (polynomial) representations of (L. Their
construction relies on a theorem of Weyl that describes how the restriction to1GL
of an irreducible representation of ¢3C breaks down into irreducible representations of
GL,-1C (see [3,12,33]). They are equivalent to semistandard tableaux (see [13]), but they
have a “linear” structure that we will exploit.
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Definition 1.1. Let v = (v1,...,vy) andy = (y1, ..., ym—1) be two partitions. We will
say thaty interlacesv, and writey <v, if

VIZYLZ2V22)Y22V32 -2 VUu_1 2 VYm—1 2 V.

Theorem 1.2 (Weyl's branching rule [13,33]Let p, be the(polynomia) irreducible rep-
resentation of5L;C with highest weight = A1 > A2 > --- > A > 0. The decomposition
of the restriction ofp, to GL;_1C into irreducible representations @L;_1C is given by

prloL,sc = EP pu- (7

H<A

After restricting p; to GL;_1C and breaking it into GL_1C-irreducibles, we can
restrict to Gl _»C:

= @(WIGLA,_ZC). (8)

GL;_oC Lk

P2.16L,_oC = (PrlGL_10)|GL_oC = <@ pu)

WA

Again, we can apply Weyl's branching rule to eaghto break them into irreducible
representations of GLoC to get

prleuc= € pv. 9)

VLA

We can keep going recursively by restricting further, and for convenience, let us denote
by A0 = )L(lm) > ... > 2™ > 0 the partitions indexing the irreducible representations
of GL,,C. We then get that

plenc= @ o (10)
A 4o qp®) =),

Definition 1.3. A sequence of partitions of the form™@ «...<A® =1 is called a
Gelfand-TBetlin diagranfor A, and can be viewed schematically as

(k) (k) (k) (k)
A Ay T A1 A
(k—1) (k—1) (k—1)
A Ay T A1
: (12)
(2 (2
Ap Ay
(@)
Aq
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with )LE.") =Ai; and eacmf/i) is a nonnegative integer satisfying
MDD 20D fori<i<k—1, 1< <i. (12)
Let Vp be the one-dimensional subspaceVif corresponding to a Gelfand—Tsetlin

diagramD. It is shown in [33] thatVp lies completely within one weight space in the
weight space decomposition &f: Vp C (Vy)g if

m m—1
B = fo’”) - Z )Lf,m’l) forl<m<k (13)
i=1 i=1
or, equivalently,
m
Prt -+ Bn= A" fori<m<k. (14)

i=1

Hence Gelfand—-Tsetlin diagrams fbrcorrespond to the same weight if all their row
sums are the same. This discussion is summarized in the following theorem due to Gelfand,
Tsetlin and Zelobenko.

Theorem 1.4 [12,33]. For A = (A1, ..., At), the number of Gelfand-Tsetlin diagrams
with first row A is the dimension of the irreducible representatitj of GL;C with
highest weight.. Furthermore, the multiplicityn; (8) of the weightg in the irreducible
representation oGL,C with highest weight. is given by the number of Gelfand—-Tsetlin
diagrams with first rows such that Eq(13) (or (14))is satisfied.

Two irreducible representatiorig, and V,, of gl C restrict to the same irreducible
representation o$l;C if A; — y; is some constant independentiofor all ;. Hence we
might as well require that thi; sum up to zero. However, normalizing the sum this way
can introduce fractional values @f so we’'ll have to translateé back to integer values
when writing down Gelfand—Tsetlin diagrams ftiose representations, or, equivalently,
translate the integer lattice along withso that the inequalities

(+D) < 4 () < 4 G+D) ; .
e forl<i<k-—-1, 1<) <,
always have
i+ _ 4 @) (&) _ 4 G+D
A A eN and A=A eN.
There is a geometrical way to view the enumeration of the number of Gelfand-Tsetlin

diagrams for a given.. With A(¥) =  fixed, we can let all the other variablesl(m): 1<

i <m, 1<m <k} bereal variables. The system of inequalities (12) among the entries of
Gelfand-Tsetlin diagrams, when viewed over thals, defines a rational polytope, called
the Gelfand-Tsetlin polytope fax and denoted GI. GT, has dimension at mo{f;),
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and equal to that number if thg’s are distinct. We can consider the intersection of this
polytope with the affine subspace obtained by fixing a wejgl{fixing the row sums
using Egs. (13) or (14)). We also get a rational polytope this way, called#iand—
Tsetlin polytope foi and 8 and denoted GiTg. Its dimension is at mogt’,"). Kirillov
conjectured in [20] that the polytopes ¢4 are integral polytopes, but this was recently
disproved by De Loera and McAllister [24].

The upshot is that integer solutions teetlselfand—Tsetlin diagram constraints then
translate into integer points inside tpelytopes, hence the nurar of Gelfand—Tsetlin
diagrams of weighg for A is the number of integer points in the polytope Gl

1.3. Partition functions and chamber complexes

Partition functions arise in the representation theory of the semisimple Lie algebras
through Kostant’s formula for the multiplites (6). Kostant’s partition function sends
a vector in the root lattice to the number of ways it can be written down as a linear
combination with nonnegative integer coefficients of the positive roots, and this is a simple
example of a more general class of functions, callector partition functions

Definition 1.5. Let M be ad x n matrix over the integers, such that M R™ ; = 0. The
vector partition functior{or simply partition functior) associated t@/ is the function

¢M:Zd—>N, b+ |{xEN”: Mx:b}|.

The condition ke# N R’;O =0 forces the sefx € N': Mx = b} to have finite size, or
equivalently, the seftr € R%,5: Mx = b} to be compact, in which case it is a polytopg
and the partition function is the number of integral points (lattice points) inside it.

Also, if we let My, ..., M, denote the columns a#/ (as column-vectors), and =

(x1,...,xy) € R’;o, thenMx = x1M1 + xoM> + - - - + x, M,, and for this to be equal tb,
b has to lie in the cone po&f) spanned by the vector®;. So ¢, vanishes outside of

pogM).

It is well-known that partition functions are piecewise quasipolynomial, and that the
domains of quasipolynomiality form a complef convex polyhedral cones, called the
chamber complexSturmfels gives a very clear explanation in [30] of this phenomenon.
The explicit description of the chamber complex is due to Alekseevskaya, Gelfand and
Zelevinski [1]. There is a special class of matrices for which partition functions take a
much simpler form. Call an integetr x n matrix M of full rank d unimodularif every
nonsingulad x d submatrix has determinagtl. For unimodular matrices, the chamber
complex determines doaims of polynomiality instead of quasipolynomiality [30].

Itis useful for what follows to describe how to obtain the chamber complex of a partition
function. LetM be ad x n integer matrix of full rankd and ¢y, its associated partition
function. For any subset C {1, ..., n}, denote byM, the submatrix ofM with column
seto, and lett, = pog M, ), the cone spanned by the columns\gf. Define the seB5 of
basesf M to be

B={o C{1,...,n}: |o|=d and rankM,) = d}.
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B indexes the invertiblel x 4 submatrices of¥/. The chamber complewf ¢, is the
common refinement of all the cones, aso ranges ovei3 (see [1]). A theorem of
Sturmfels [30] describes exactly how fiion functions are gusipolynomial over the
chambers of that complex.

1.4. The chamber complex for the Kostant partition function

If we let M4, be the matrix whose columns are the positive ramjé”) of A, written
in the basis of simple roots, then we can write Kostant’s partition function in the matrix
form defined above as

K, () =bn,, (v).

Consider for example the simple Lie algete®C, or A3. The positive roots are
Aﬁf3) ={e; —e;: 1< i < j <4}, Writing the positive roots in the basis of simple roots,
we haveAS:“) = {1, a2, a3, 1 + a2, a2 + a3, a1 + a2 + a3}. This gives

1001 0 D
MA3=<O 1 011 })
0 01 01

which has the bases
B={123 125,126 134, 135 136, 145, 146, 234, 236, 245, 246, 256, 345, 356, 456},

where we're writingi1izig for {i1, i2, i3}.

All the cones corresponding to these bases are contained in the first cone with basis
{1, 2, 3} which is just the positive octant iR3. To picture the chamber complex, we can
look at the intersection of these cones with the hyperpla#iey + z = 1. Figure 1 shows
the cones given by the bases Bf while Fig. 2 shows their common refinement (this
originally appeared in [25]). Finally, since it is readily checked thég, is unimodular,
this shows that the Kostant partition function f&g has 7 domains of polynomiality. It is
an open problem mentioned by Kirillov in [20] to determine the numbers of chambers for
the Kostant partition functions for the Lie algebrés. De Loera and Sturmfels [25] have
computed the numbers far< 6 and computed the polynomial associated to each chamber

CAAALALA

125 126 134 135 136 145 146

234 236 245 246 256 345 356 456

Fig. 1. Basis cones for the Kostant partition functionAaf.
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o

o+ 0 O+ 03

23] a3

Fig. 2. Chamber complex for the Kostant partition functiomat

The following lemma is a well-known fact abodf,, and can be deduced from general
results on matrices with columns of 0’s and Wwhere the 1's come in a consecutive block
(see [27]).

Lemma 1.6. The matrixM 4, is unimodular for alln.

M 4, unimodular means that the Kant partition functions fad,, is polynomial instead
of quasipolynomial on the cells of the chamber complex. In general/fanimodular, the
polynomial pieces have degree at most the benof columns of the matrix minus its rank
(see [30]). In our caseM 4, has rank: and as many columns as, has positive roots,
(’“Zrl). Hence the Kostant partition function fak, is piecewise polynomial of degree at

most("3") —n = (3).

Remark 1.7. In view of Kostant’s formula for the weight multiplicities (6), this means that
the multiplicity functionm, (8) for A, is piecewise polynomial of degree at mt@) in

the g-coordinates if the.-coordinates are fixed, or degré@ in the A-coordinates if the
B-coordinates are fixed. So we can regard it as a piecewise polynomial function of degree
(5) in the B;’s, with coefficients of degre€)) in the A ;’s. This will be made precise in
Sections 4 and 5.

From now on, we will be interested in the multiplicity function fdyC, of type Ax_1,
and thus use the results above with k — 1.

2. Themultiplicity function as a single partition function

Our first theorem presents a new conceptual approach to computing multiplicities. This
approach is efficient for large in low ranks. It has the additional advantages of allowing
us to use known facts about partitions functions.
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Theorem 2.1. For everyk, we can find integer matrices, and By, such that the multiplicity
function fors(; C can be written as

m(B) = b, (Bk (g)) (15)

Proof. Consider a Gelfand—Tsetlin diagram where we will thinkef (A1, ..., Ax) and
B = (B1.....Bx) as parameters, with the conditions thaf_, A, = Y*_, 8 = 0. The
variables in the diagram aﬂéi) with 1<i <k — 1, 1< j <. Each of thes¢}) variables
is wedged between two entries at the level above, so we get a syste@ ef 2k — 1)
inequalities. Using Eq. (14), relating the row sums to gh's, we can get rid of thé — 1
variableskgl), A(ZZ), ... ,A,({k_’ll).

A ) -1 Mo (Bi+--+B=0)
P Y o ey W Bt B
1y Gttt
2P (B1+ B2)
A (BD)

The remaining variables (boxed in the above diagram))é’f)ewith 1<i<k—-1,

1< j <i—1and there aré",") of them. To get a system'in partition function form,

we need to transform the inequalities into equalities satisfied by nonnegative variables,
however thekgi) can take negative values. Let

@) _ 4@ i+ ; s
sjl_kjl —Ajl+1 1<i<k-1,1<j<i—-1
be the differences between the variables and the ones immediately above and to the right
of them, recalling thaxﬁ.k) = A;. Upon doing the substitution in the system of inequalities,

("51) of the inequalities simply becoméi) > 0 because of Eq. (12). So we are left with a
system of '

k—1 1
N=k(k—1)—< 5 >=§(k—1)(k+2)

inequalities in theK = (kgl) nonnegative and integrahriables;ﬁ.i), which we will relabel
s1, ..., Sk for convenience.

The final step is to transform the inequalities into equalities. To this effect, we write
each inequality in the form
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=~

+Zcmj,3js

j= Jj=1

Am1S1 + am2s2 + -+ amk Sk <

L~
s

for1<m < N and integer&,1, ..., amk, bmj, cmj (1< j <k).
We introduce a slack variable for eaclequality to turn it into an equality:

k
am1S1 + am2s2 + - -+ + Ak Sk + SK+m = mej)\j + Zcmjﬁj'
j=1 j=1

The slack variablesg 11, ..., sx+ny are nonnegative, just like the previokss;, and
integral solutions to the system of inequalitigill correspond to integral solutions to this
system of equalities, s +1, .. ., sk+n are not only nonnegative but integral.

Finally, we can write the system of equalities in matrix form:

51
aii --- 41k : D j=abijhj+ )i c1jB)
. SK _ .
: In SK+1 - . . (17)
ani1 -+ ANK )
Zl;=l bnjhrj+ Z];=1 cNjBj
Ey

SK+N
A
Bk(ﬁ)

The result follows, since the number, (8) of integral solutions to the Gelfand—Tsetlin
inequalities is the number of all integral nomgagive solutions to this matrix systemno

The partition functiompg, in the above theorem lives onarger dimensional space than
the one we need. It takes valuesRf = R«-D*+2/2 whereas the part that interests us,
the space given bﬁk( ) as ther; andg; range oveiRi has dimensionk— 2. Let

k k
§:{Bk<;):keRk,ﬁeRk, ;M:;,BiZO}, (18)

then the only part of the chamber complex that is relevant to the multiplicity function is

its intersection withB. Since the chamber complex is obtained as the common refinement
of the base cones, we will get the same thing if we find the refinement of the base cones
and then intersect the result wifh, or intersect the base cones wihfirst and then find

the common refinement of those restricted base cones. Since we only need the restricted
chamber complex, this simplifies theroputation because we have to deal wizh — 2)-
dimensional cones instead @f — 1)(k + 2)/2-dimensional ones. Another bonus we get
from working on B is that on this spaceBy is an invertible transformation, so we can
rectify the cones t@a, g)-coordinates. In effect, we remove the coordinate “twist” due to
matrix By.
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Definition 2.2. We will denote byC® this rectified (2k — 2)-dimensional complex in
(A, B)-coordinates.

BecauseE; is not unimodular in general, the associated partition function will be
guasipolynomial on the cells of the chamber complex. We will prove in Section 5 that it is
actually polynomial on the cells of the complex. As such, we will from now on refer to the
domains of quasipolynomiality of the multipitg function as domains of polynomiality.

Remark 2.3. The multiplicity function dso satisfies another sort of polynomiality property.
There are many ways to think of fixed tygedominant weights. andg as living ins(,.C

for any sufficiently larger. It is known (see for example [4,19]) that iviy)(ﬂ) is the
multiplicity of g in the irreducible representatidn, of s[,.C, thenm([)(ﬂ) is given by a
polynomial function irv, for » large enough. Bounds on the degree of this polynomial are
also given. This result is shown to extend to the other classical groups [19] and also the
classical affine Kac—Moody algebras [4]. In aovestigation of the weight multiplicities,

we instead fix the rank of the Lie algebra and study the polynomial dependencein the
andp variables.

Definition 2.4. For everya in the fundamental Weyl chamber, let

L) ={(A1,.... . B, ..., Br): Bi €R]. (19)

Note that this space is reallgk — 1)-dimensional since)_; g; = 0. Define also the
projection

PA (A1, Ak Bl Br) > (A, e, Ap). (20)

Remark 2.5. The intersection o€ ® with L(x) will give domains of polynomiality for
the weight diagram of the irreducible representatioslpf with highest weight.. The
partition into domains that we get this way, however, is not optimal, as shows140r
in Section 7. Some adjacent regions hawe shme weight polynomial and their union is
again a convex polytope, so they can be glued together to yield a larger domain.

Corollary 2.6. Let CX‘) be the chamber complex given by the common refinement of the
projectionsp 4 () of the cones of ® onto RX. Thencg‘) classifies the\’s, in the sense
that if » and A" belong to the same cell (ﬂf{‘), then all their domains are indexed by the
same subsets of cones fréiy, and therefore have the same corresponding polynomials.

Proof. We can index the top-dimensional domains by the top-dimensional eonfed®.
The domain indexed by coneis present in the weight diagram (permutahedronhfdr
andonlyifi e pa(r). O
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3. Domains of polynomiality via Duister maat—Heckman theory

The chamber complex for the multiplicity function can be used to identify domains
of polynomiality. However, these domains aret guaranteed to be as large as possible
as seen in the examples of Section 7. In this section we improve the partition of the
permutahedron into doamns of polynomiality by identifying it as a bounded plane
arrangement that appears in symplectic getsyn We begin by introducing the symplectic
setup corresponding to the special case of typenultiplicities. Then we define the
Duistermaat—Heckman function via an integral. This function is piecewise polynomial
with natural domains of polynomiality in tersnof Weyl group orbits. Finally, we will
use a powerful theorem of Meinrenken [26] and Vergne [32], the so-cBllehtization
Commutes with Reduction Theoretim show that the multiplicity function can be written
locally as a very similar integral with the same domains.

Let G = SU(k), T the Cartan subgroup of;, g andt their Lie algebras{’ the
fundamental Weyl chamber anty C t* the weight lattice ofz. Fora e t§ N Aw, we will
denote byA, the convex hull of the Weyl group orbit af in t* (i.e., the permutahedron
associated ta). Let O, = G - diag(») be the coadjoint orbit fox. We can viewO,, as the
set ofk x k Hermitian matrices with eigenvalug¢s,, ..., A¢}. By a theorem of Schur and
Horn [17,28] (or Kostant's convexity theorem [23], which extends the result to all compact
Lie groups).A, is the image of the coadjoint orbi?, with respect to the projection map

7igt— t* (21)

The coadjoint orbit®, are the geometric counterpart to the irreducible representations of
G with highest weight.. Note, the multiplicities for irreducible representations for(§JJ
and Sl(k) are the same.

ConsiderM = 0, and let® : M — t* be the restriction ofr to M. In this case@® is
the moment map of the symplectic manifdifl under thel' action. The set\reg C A;, of
regular values oo decomposes into a disjoint union of its connected components:

Areg=|_J Ai (22)

and eachy; is an open convex polytope by a generalization of Kostant’s convexity theorem
due to Atiyah [2] and Guillemin—Sternkg[15]. In fact, the singular values @f have the
following nice combinatorial description. Ttheorem first appeared in Heckman’s thesis
[16]

Theorem 3.1 ([14, Theorem 5.2.1], [16])The singular points of the moment map
@ : M — t* are the convex polytopes

con(W - (1), (23)

whereo € &, and W is any parabolic subgroup o&; generated by all reflections
corresponding to roots orthogonal to a conjugate of a fundamental weight.
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In other words, theA;’s are the regions in the arrangement given by slicing the
permutahedron by bounded hyplenpe regions parallel to oraf its exterior facets which
pass through orbit points. See for example Fig. 4 in Section 7. Note, this is not a hyperplane
arrangement inside a polytope since the convex hulls do not necessarily extend to the
boundary of the permutahedron.

Duistermaat and Heckman have shown that much of the geometry of coadjoint orbits
can be determined simply by studying thes. Foru € A;, thesymplectic reductioonf M
at the regular valug of @ is defined by

M, =o )/ T. (24)

For arbitraryG, the reduced spad¥,, of M at a regular value of is an orbifold, but for
SU(k) this orbifold is a compact Kéhler manifold whose symplectic form we will denote by
wy, [7]. Duistermaat and Heckman [7] have shown that = M,,, as complex manifolds
for any pairuo, u € A;. Furthermore, they have also shown the linear variation formula [7],

(,()u = wuo + <l’L — MO0, C)a (25)

wherec e t ® QZ(MM) is the Chern form of the principaf-bundle ®~1(u) — M,.
Therefore, they use this fact about the symplectic forms to show thad/ foof dimen-
sion 24, the symplectic volume function

wd
PH(w) = / expw,, = / - (26)

My, My,

is a polynomial function omj;, called theDuistermaan—Heckman polynomidote that
the only aspect of this integral that depends specificallyuprand not just on which
connected component of regular values contains it, is the symplectic form which is
determined by (25). From the integral, one can show that the degrees of these polynomials
are less than or equal tdimM)/2 — dimG.

Using a theory of quantization initiated by Kostant, Kirillov and Souriau (see [22],
for instance), we can apply the same reasoning used by Duistermaat and Heckman to the
multiplicity function.

Theorem 3.2. The partitions of the permutahedron fax(k) (or si;C) into its domains of
polynomiality for the weight multiplicities and for the Duistermaat—Heckman measure are
the same. Namely, the domains are the connected components of regular points determined
by (23).

Proof. Let Td(M,,) be the Todd form ofM,,. The Quantization Commutes with
Reduction Theorem [26,32] asserts thatfos A;,

() = / (expw,) Td(M,i). (27)

My,
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The right hand side is the Hirzebruch—Riemann—Roch numbgf,ofThe only factor in
the integral which depends gnis the symplectic form, everything else depends only on
the region containing. Thus by (25)m; (i) is a polynomial function ofc on A; as with

the Duistermaat—Heckman measurel

Remark 3.3. This proof implies that the optimal domains of polynomiality for the
multiplicity function must be unions of tha;’s. Guillemin, Lerman and Sternberg [14]
have shown that this partition is optimal for the Duistermaat—Heckman measure by
showing that the difference between thalynomials in two adjacent regions is nonzero.
We conjecture that this partition is also optimal for the multiplicity function. This has been
confirmed up to SkLC.

As further evidence for the conjecture, we note that on a given domain, the weight
polynomial and the Duistermaat—Heckman polynomial in (26) have the same leading term
since

d
Td(M,) =1+ 1 (28)
j=1

with 7; € £22/(M,,) in the de Rham complex.

Remark 3.4. It is a very interesting open problem to count the regions in the permutahe-
dron subdivided according to Theorem 3.1idT'ts the analog of Kirillov's question for

the Kostant partition function mentioned in Section 1.4. We have determined all the region
counts for SLC in Fig. 8.

There are many links between the weight multiplicities and the Duistermaat—Heckman
function. For example, Dooley, Repka and Wildberger [6] provide a way to go from the
weight diagram fon. to the Duistermaat—Heckman measuredqr,s:

= Y m@Rm (29)

B weight of V;,

Also, if v is the Lebesgue measure 6h normalized so that the parallelepiped given by
the simple root vectors has unit measure, we defin®tlistermaat—Heckman measuce
be the producyP"v. Now for eachn € N construct the discrete measure

1
= E ) 30
Vn dimV,,A ‘ muy (B) B/ns ( )
B weight of v,

whered, is a point mass at andV,,, is the irreducible representationaf(k) with highest
weight ni. Then Heckman [16] proved that, converges weakly to the Duistermaat—
Heckman measure as— oo.
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Furthermore, the Duistermaat—Heckman function from above can be computed in the
following way (see [14]): its value at a poini, 8) is obtained by using Kostant's
multiplicity formula withé = 0 and a deformation of Kostant's partition function that takes
thg volume of the polytopggka)aca. € R'ﬁo”: Zaem kya = v} instead of their number
of integral points.

4. The Kostant arrangements

In this section, we will construct a hypdame arrangement whose regions are also
domains of polynomiality for the multiplicityunction. This partition into domains will
be unlike the ones obtained in Remark 2.5 and Theorem 3.1 in that it is not invariant under
rescalingr and 8. We will deduce the form of this arrangement from a closer look at
Kostant's multiplicity formula (6) and its chamber complex defined in Section 1.4.

Lemma 4.1. The set of normals to the facets of the maximal cones of the chamber complex
of the Kostant partition function afl,, consists of all the conjugates of the fundamental
weights.

Proof. The facets of the maximal cones of tlihamber complex span the same
hyperplanes as the facets of the base somkose common refinement is the chamber
complex. Base cones correspond to sets tihearly independent positive roots. Fixing
a particular base cone spanned fy, ..., y,}, consider the undirected grapt on
{1,...,n+ 1} where(, j) is an edge ife; — e; = y,, for somem. The fact that the/;'s

are linearly independent implies th&@t has no cycles. S¢ is a forest, and since it has
n + 1 vertices ana edges (one for eacghy), it is actually a tree. Suppose now we remove
yj =es —e; and want to find the normal of the hyperplane spanned by the ptiseiThe
graphG with the edge(s, t) removed consists of two tre@s andT». List {1,...,n + 1}

in the form

Ol 01,02, ..., 01,8, 0,041, ..., Ip41-2,

vertices ofTy vertices ofT»

where we will think ofo as a permutation in one-line form.

Now let «; = e, (i) — €5 (i+1) and note thatx’,. =e; — e, =yj. The set{a], ..., a,}
is a root system basis because it is the image under the actierm’obf the original
simple rootsy; = ¢; — ¢;1+1. Observe that every edge i can be expressed as a sum

of a’l,...,a;_l, and every edge irf> as a sum ofaf,.+1,...,a;,, SO ihat ally;’s in
{y1,...,7j,..., va} can be expressed as linear combinationsz’pf...,a’,., ...,o. The

normal for the corresponding hyperplane will therefore bejtiefundamental Weighb;.
forthe basido), ..., a ) =0 - {a1..., a,).

Conversely, given any fundamental weigfit for the root system basis - {«1 ..., a,}
(or equivalentlyp 1 - w;j, wherew; is the jth fundamental weight for the standard simple
roots), we want to show it can occur as the normal to a hyperplandf ltet a hyperplane
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separating the standard positive roots from the negative ones. Fowgach - «;, we

can pick a sigre; such that;«; is on the positive side off . Hence{e1a], ..., e, } is @
linearly independent subset of the set of standard positive roots, and thus it corresponds to
one of the base cones #8f,,. The corresponding graph is a path since we have a system
of simple roots (up to sign reversal). Removin)gx;. and applying the above procedure
with the order given by the path gives thagt occurs as the normal of the corresponding
hyperplane. O

To compute multiplicities forsl;C using Kostant’'s formula, we look at the points
o(A+38)—(B+36), aso ranges over the Weyl groug,. Some of these points will lie inside
the chamber complex for the Kostant partition function and we compute the multiplicity
by finding which cells contain them and evaluating the corresponding polynomials at those
points. Starting with generie and 8, none of the pointg (A + 8) — (8 + §) will lie on
a wall of the chamber complex of the Kostant partition function, and if we mosaed
B around a little in such a ay that none of ther (A + §) — (8 + §) crosses a wall, we
will obtain the multiplicity for the newia and 8 by evaluating the same polynomials. So
there is a neighborhood @£, 8) on which the multiplicity function is given by the same
polynomial in variableg. andg.

Lemma 4.1 describes the walls of the chamber complex for the Kostant partition
function in terms of the normals to the hyperplanes (though the origin) supporting the
facets of the maximal cells. Now a pointi + 8) — (8 + ) will be on one of those walls
(hyperplane though the origin) when its scalar product with the hyperplane’s normal, say
6(wj), vanishes, that is when

(o +8)— (B+8).6(w)))=0. (31)

For any A, consider the arrangement of all such hyperplanes far 1< k and o,

0 € 6. For B and 8’ in the same region of this arrangement and any fixed &y, the
pointso (A + 8) — (B + &) ando (A + 8) — (B’ + 8) lie on the same side of every wall of
the chamber complex for the Kostant partition function. Figure 3 (on the left) shows the
arrangement we get far= (11, —3, —8) in A, with and without the weight diagram.

In view of the invariance of the multiplicities under the action of the Weyl group,
Kostant's formula has to give the same thing if we replétsy + (8), ¥ € &;. Replacings
by ¥ (8) in Egs. (31) above yields another hyplame arrangement, which we will denote
by Af\‘/’). Hence for each, we get a family of arrangements indexedby: &, which we
will call the Kostant arrangement®r . Figure 3 (on the right) shows the superposition
of those arrangements far= (11, —3, —8) asy ranges over the Weyl group.

Suppose the chamber complex fhetKostant partition function fost; C hasr (k) full
dimensional cones. We will choose a labeling of these regions with the integersi(k)
once and for all, and let the associated polynomialpbe .., p,«). Recall, these are
polynomials of degreé*;l) on the subspace; + - - - 4+ x; = 0 of R¥. We will also label
the exterior of the chamber complex by 0 and let its polynomial be the zero polynpgnial
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(id)

Fig. 3. Kostant arrangemt.=zm(1173 _8)

for A, (left). Superposition of the Kostant arrangemen{{iis_is)
for all choices ofyr (right). :

Definition 4.2. For generic. and g, let vf,‘”()», B) (orjustv((,’p)) be the label of the region
containing the point- (A + 8) — (¥ (B) + §) (this label is unique for generic and j).
Define thetypeof A andg to be the vector

Type(iﬁ)(k’ B) = (U(II/))

o JoeSy’

for some fixed total order 06&;. Furthermore, define

PYB = (-1 p (ot~ (w(B) +9)). (32)

oeBy

Lemma 4.3. PA(‘”) is a polynomial function on the interior of the regionsAﬁ"’) and
coincides with the multiplicity function there.

Proof. For fixed 1, the type of points along a path between t®s in the interior of

the same region Qﬂ(k‘p) will remain the same by definition of the Kostant arrangement
(because ne (1 +8) — (¥ (B) + §) crosses a wall along that path)o

The reason why Lemma 4.3 is restricted to the interior of the regions is that while
polynomials for adjacent regions of the chambemplex for the Kostant partition function
have to coincide on the intersection of their closures, there is a discontinuous jump in the
value of the Kostant partition function (aspiecewise polynomidunction) when going
from a region on the boundary of the complex to region 0 (outside the complex).

Remark 4.4. Given a rational polytop&® of dimensiond in R" andt € N, denote by
tQ the polytope obtained by scaling by a factor ofs. Ehrhart [8] showed that the
functiont — |t Q N Z"|, counting the number of integer points4@® as a function of,
is a quasipolynomial of degre®, and a polynomial of degreg if Q is integral. This
function is called theEhrhart (quas)polynomialof the polytopeQ. Furthermore, the
leading coefficient of the Ehrhart quasipolynomial is theimensional volume oD. It
can be shown that for every fixedandg, and anyy, the functiory > Type¥)(zA, 18) in
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the nonnegative integer variableventually stabilizes asgrows (in a way that depends
only onk and not om. andg). This can be used to give a proof that the Ehrhart functions
of the Gelfand—Tsetlin polytopes G are polynomial (we omit the proof since we prove
something stronger in Corollary 5.2 below).

In the definition of the Kostant arrangente above, a lot of the hyperplanes are
redundant. We simplify here the descriptiontodse arrangements. Since everything occurs
on the subspace, + - - - +x; = 0 of R¥, so that(o (A +8) — (W (B) +4), (1,1, ...,1)) =0,
we can regard the normals to the hyperplanes up to adding multiples, of.. ., 1)
without changing the Kostant arrangements. So we cabysew; 4+ £(1,1,...,1):

1
(Z)/:z(k,k,...,k,O,O,...,O):(1,1,...,1,0,0,...,0)=e1+---+e,',
' ——— —— ——— ——— '

j times k—j times j times k—j times

which is more convenient than; for what follows. The hyperplanes oig'/’) then have
the form

0={0(A+8) — (Y(B) +9),6(d;)),
0=(0(A) — ¥ (B) +0(8) — 8, eoy + -~ + €a(j)),

J
0= o109y = By-100i0) + So-101y) — 30>
i=1
J
B0y ++ By-10G) = re-tey T+ he-100y) + D Go-100iy) — 860)):
i=1
(33)

At this point we can get rid of the permutations since only the sulsséts.. ., j}),
vlo(1, ..., j) ando10({1, ..., j}) are important and not the order of their elements.
They can be any subsets singe 10, 0~10 and 6 can be any three permutations of
©. Because thes;, the A; and thes; sum up to zero, replacing these subsets by their
complements gives the same hyperpldrigs proves the following proposition.

Proposition 4.5. The hyperplanes of the Kostant arrangements are defined by the equations
J
lgu1+"'+,3ujZ)\v1+"'+)\vj+2(8vi_8wi)7 (34)
i=1

whereU = {ug,...,uj}, V={v1,...,v;} and W = {wy, ..., w;} range over allj-elem-
entsubsets dfl, ..., k} andj < |k/2].
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We will call the correction term involving only in a hyperplane given as in (34), the
3-shift

j
Shift(V, W) =) " (8u; — bu,)- (35)
i=1

Remark 4.6. For fixedU, we get a series of parallel hyperplanes, and we can determine
which are the outer ones because they gpoad to maximal and minimal sums b, .
Since thexry > A2 > --- > A, they are

Buy+ -+ Buy =r1+--- 4+ 1 +shift({1,..., j}, W),

) . (36)
Buy+ -+ Buy = M—jr1+ -+ M +shift({k — j+1,....k}, W).

Note that since the coordinates &fare decreasing, shift.,..., j}, W) > 0 and
shift((k — j+1,...,k}, W) <Oforall W.

We conclude this section by relating the domains given by the Kostant arrangements
and those given by Theorem 3.2, by showing that the hyperplanes supporting the facets of
the domains are precisely the hyperplanes of the Kostant arrangements with#xstifte
factors.

Proposition 4.7. The supporting hyperplanes of the facets of the top-dimensional domains
of the permutahedron for genericare the hyperplanes

Buy -4 Buy = Aoy + -+ Ay (37)

for 1< j<1k/2] andU = {ug,...,u;}, V= {vy,...,v;} ranging over all pairs of
j-element subsets ¢f, . . ., k}.

Proof. Theorem 3.1 gives the walls supporting the facets as the convex hiMs ef(1),
whereo (1) is a point of the Weyl orbit ok, andW is a parabolic subgroup of the Weyl
group. ForSy, those subgroups permute two complementary sets of indices independently.
If U is one of those sets of indices, withi| = j, anda,,, ..., Ay, the coordinates af (1)

in those positions, then the hyperplane supporihgo (1) is

,3u1+"'+,3u]-=)\v1+"'+)\vj- (38)
Had we chosen the complement Gf instead with the remaining;’s, we would have
gotten the same hyperplane in the subspace - - - + x; = 0 of R* since the;’s and the

Bi’s sum up to zero. O

We can obtain the following corollary without using the full description of the domains
of the permutahedron obtained by symplectic geometry means in Theorem 3.1.
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Corallary 4.8. The hyperplanes supporting the facets of the permutahedron for a generic
A are

lgu1+"'+,3uj=)\l+"'+)\j,

(39)
Bus + -+ Buy = hi—jr1+ -+ Ak

for 1< j < |k/2] andU = {uy, ..., u;} ranging over allj-element subsets ¢f, ..., k}.

Proof. We remark that the “shell” of the weight diagram is just a permutahedron, whose
facets can easily be described in termp@fmutations (see [34, p. 18]). FBrc {1, . . ., k},
construct &-vector by putting the firgt/ | 2;’s in the positions indexed by and filling the
other positions with the remaining elements. Then act by the subgra@ip tbfat permutes

the elements in positionts and{1, ..., k} \ U independently to get a facet as the convex
hull of the points of this orbit. The affine span of this facet is the hyperplane

,3u1+"'+,3u,-=)»1+"'+)»j«

By choosing the lasfU| A;’s instead, we get the hyperplane supporting the opposite
parallel facet. These are the outer hyperptafiem (36) without the shifts. Remark 4.6
also implies these outer hyperplanes actually lie outside the permutahedron.

Remark 4.9. The Weyl orbits ofw; andwi—; (1< j <k —1) for siC (type Ax_1)
determine the same set of directions, siage ; is —w; with the coordinates in reverse
order. So the Weyl orbits aby, ..., wx/2) already determine all the possible normals to
facets of the permutahedron (and the hytenes of the Kostant arrangement).

5. Polynomiality in the chamber complex

Theorem 2.1 allowed us to write the multiplicity function as a partition function,
which is therefore quasipolynomial over the convex polyhedral cones of the chamber
complexC®. On the other hand, for each dominant weighfTheorem 3.2 shows that
the partition of the permutahedron from Theorem 3.1 gives domains over which the
multiplicity function is polynomial in. We show here that the quasipolynomials attached
to the complex® are actually polynomials, so that the multiplicity function is polynomial
in bothA andg over the cones of the complex.

The union of the cones of the complé% is the cone

T® = | (2} x conu&; - 1), (40)
reCop

where(Cy is the fundamental Weyl chamber.
We can lift the partition of the permutahedron from Theorem 3.1it@8)-space by
lifting the wall
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con (W - o (X))

to

J (1} x co(w - ().

reCop

This gives a partitio ©) of the conel’ ® into convex polyhedral cones, and Theorem 2.1
implies that the multiplicity function is quasipolynomial over the coneg é¢t. We recover
the domains from Theorem 3.1 by intersectiif) with L () from Eq. (19). Our reason
for introductingZ ® rather that working with the compleX* is that Proposition 4.7 lets
us describe the hyperplanes sugpay the facets of the cones &%) easily. Indeed, if

:3u1+"'+,3u_/:)‘v1+"'+)\v_/

supports a wall conw - o (1)) for fixed A, then the waIUAeCO{A} x conMW - o (X)) is
supported by the hyperplane

lgu1+"'+,3uj=)\v1+"'+)\vj

in (1, B)-space, where we now think afas variable, just like.
The last tool we need is a lifted version of the Kostant arrangements. Recall from (33)
that the Kostant arrangemenﬁ‘p) has the hyperplanes

J
By-16ay + + By-10G) = ta-tey T+ ha-t00n T D Go-100y) — 90))s
i=1

as6 ranges ove6;. We will denote byA¥) the arrangement with hyperplanes

j
By-10y -+ By-10G) = ra 10y T+ ra-t00n + D Go-10ay) — 800))s
i=1

where we now think of as variable, and ranges oveS, as before. The definition of
PA("’) (Eq. (32)) and Lemma 4.3 generalize to give us a piecewise polynomial furrefton
in A and 8 that expresses the multiplicity functias a polynomial on the interior of the
regions of the arrangement?).

Theorem 5.1. The quasipolynomials determininiget multiplicity function in the cones of
7® andC® are polynomials of degre¢ ") in the 4;, with coefficients of degre¢ )
inthex;.
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Proof. We will show that for each con€ of 7®) we can find a regiom of the Kostant
arrangemenid) (for any v), such thatC N R contains an arbitrarily large ball. Then
PWY) and the quasipolynomial i agree on the point§x, 8) in that ball for which
(M, B) e Ay x Ay andir — B € Ag (the points corresponding to allowable pairs of a
dominant weight and a weight of its irreducible representation). The quasipolynomial must
therefore be polynomial on those points. The degree bounds follow from Remark 1.7.

By the remarks preceding this theorem, the hyperplanes supporting the facets of the
cones of7 ®) are exactly the same as the hyperplanes of the Kostant arranggtifent
with the shifts removed. If we deforml”’ continuously to make the shifts zero (by
multiplying them byr and lettings going from 1 to O, for example), the final deformed
arrangement is a partition df® that refines7®. Let R be any region ofA") whose
deformed final version is contained (h Consider a ball of radius inside the deformed
image ofR, and suppose it is centered at the painlf s is the maximal amount by which
the hyperplanes of the Kostant arrangement are shifted,Rheontains the ball of radius
r — s centered at, and so doe€’ N R. SinceC is a cone, we can makearbitrary large
and the result follows sinceis bounded.

We get the same result for the complé%’ by passing to its common refinement
with 70, g

Recall from Section 3 that the weight multiplicity function and the Duistermaat—
Heckman function have the same leading term. In particular, the degree of the multiplicity
function is at most the upper bound on the degree of the Duistermaat—Heckman function.
For a torusT” acting on a symplectic manifolt, the latter is known to bédimM)/2 —
dimT. In our caseM is the coadjoint orbitD, and dimT = k — 1 sinceT is the set of
k x k traceless diagonal Hermitian matrices. The dimensiof;ois k2 — k = k(k — 1) for
generich, but for nongenerié, we can get more precise bounds on the degrees. Since the
coordinates of. are decreasing, it has the form

V1, ..., V1,02, 000,02, ., U, .., V)
—— — — —_—
kq times ko times k; times

wherev; > vz > --- > 1 and thek; sum up tok. In this case, one can show that
dim0; = k? — Y_k?, so that the weight multiplicity function for that is piecewise
polynomial of degree at most

k2 — Y k2
%—k+1. (41)

For s14C, for example, we get at most cubic polynomials for gengriat most quadratic
polynomials forx with exactly two equal coordinates, at most linear polynomial$ foith
two pairs of equal coordinates 6f the form(v, v, —v, —v)) and constant polynomials for
A with three equal coordinates 6f the form(3v, —v, —v, —v) or (v, v, v, —3v)).

We can also deduce from Theorems 2.1 and 5.1 that the multiplicity function for type
A exhibits a scaling property in the following sense.
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Corollary 5.2. Let T be the sef(x, B) A%,V: A — B € Ag}. For any generidir, B) € T,
we can find a neighborhodd of that point over which the function

M, B, e (UNT)x N> my (1) (42)
is polynomial of degree at mog{‘;") in r and (%) in the » and 8 coordinates.

Proof. Let (A, 8) € T. For U sufficiently small, the point$(zA, ¢8): t € N} lie in the
same cone of the chamber compt&X, and forr € N, rA andz are points on the weight
lattice with their difference on the root lattice. Hence the corresponding multiplicities are
obtained by evaluating the same polynomial at those poirnts.

Remark 5.3. This corollary implies in particular that the Ehrhart functions (see Re-
mark 4.4) of the Gelfand—Tsetlin polytopes 4 are always polynomial, even though
the polytopes are not always integral (see [24]).

6. Factorizationsof weight polynomials

In this section we use the explicit relation between the hyperplanes of the Kostant
arrangements and the supporting hyperplanelsepartitioned permutahedron to identify
certain factors in the weight polynomials. As mentioned in the introduction, Szenes and
Vergne [31] have recently observed this factorization phenomenon for general partition
functions. The quasipolynomiadssociated to the partitiomriction’s chamber complex
exhibit a certain number of linear factors that vanish on hyperplanes parallel and close
to those supporting the walls of the complex. In our case it is unclear how to deduce the
form of the walls of the compleg ® from the complex of the partition function given by
matrix E; in Section 2. We are however able to deduce similar results from the Kostant
arrangements and the description of the lmpfsnes supporting the walls partitioning the
permutahedron from Section 4.

6.1. On the boundary of the permutahedron

We have seen in Proposition 4.8 that each facet of the permutahedron is parallel
and close to a hyperplane of a Kostant arrangement. This means that the domains of
polynomiality of the weight diagram that are tive boundary of the permutahedron overlap
with regions of the Kostantreangement, but can’t coincideecause of the shifts caused
by . We can use this to our advantage to show that those weight polynomials have to
factor somewhat. The reason is that two polynomials give the weights in the overlap: the
one attached to a cone of the chamber complex obtained from writing the multiplicity
function as a single partition function, and oY), coming from Kostant’s multiplicity
formula. Because the overlap isn’t perfebig ppolynomial from Kostant’s formula is valid
on a region that goes outside the weight diagram and must therefore vanish there. The
purpose of this section is to make precise this phenomenon and quantify it.
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Definition 6.1. For fixedx, consider the hyperplane

H: ,3u1+"'+,3uj=)\v1+"'+)\vj’

where 1< j < [k/2] andU = {u1,...,u;}, V ={v1,...,v;} are j-element subsets of
{1,..., k}. We will call the polynomial

VU,V()\)Z,BM1+"'+,BMJ-_Avl_"'_)”vjez[ﬂ] (43)

thedefining equatiomf H. For variablex, we also define

)/U,Vzlgu1+"'+,3uj_)\vl_"'_)\vjEZ[)h,B]- (44)

Theorem 6.2. Let R be a domain of polynomiality for the weight diagram of the irreducible
representation ofl;C with highest weighi, and pg be its weight polynomial. Suppose
that R has a facet lying on the boundary of the permutahedronftinat hasé (w;) as
its normal vector, for some € &;. If y = y (1) is the defining equation of the hyperplane
supporting that facet, thepg, is divisible by thej (k — j) — 1 linear factorsy + 1, y + 2,

LY+ jk—H—-liory—-1y—-2,...,y—jlk—j+1

Observe that this is invariant under replacipndy k — j, which is a consequence
of the remark in Remark 4.9. By that rerkamwe can therefore restrict ourselves to
1< j < |k/2].

Proof. Suppose the hyperplane supporting the faEebf R on the boundary of the
permutahedron has norméiw;). By Remark 4.6 and Proposition 4.8, this hyperplane
is either

Boy +---+Pojy =A1+---+24; OF (45)
Boy + -+ Bo(jy = r—jr1+ -+ A (46)

Suppose it's the first one (the argument is the same for the second one). From
Proposition 4.5, we know that in the Kostant arrangements, we have the hyperplanes

Bowy + -+ Boj) = A1+ -+ Aj +shift({L, ..., j}, W), (47)

for W ranging overj-element subsets ¢1, .. ., k}. We want to identify a regio®’ of one

of the Kostant arrangements that overlaps wiitand extends beyond the boundary of the
weight diagram as far as possible. Note that although the exterior wallsaofd R’ have

to be parallel, the interior walls do not.
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First we find a hyperplane of one of the Kostant arrangements parallél &md
outside the permutahedron. Recall from Rekn4.6 that hyperplanes of the form (47)
have nonnegativé-shifts. For positives-shift, the corresponding hyperplane lies outside
the permutahedron. In fact, we would like to maximize

J J
shift({1,.... /1 W)=Y 8 = by, (48)
i=1

i=1

because this will dermine how muctpy factorizes. The first sum is as large as possible
because it is the sum of the firstoordinates of

8=%(k—1,k—3,...,—(k—3),—(k—1)).

Sincej < |k/2], we can pickW disjoint from{1, ..., j}. PickingW ={k — j +1,...,k}
means the second sum consists of the last (and smallest) entdedbiéis (k — 1)/2,
(k—3)/2,..., (k—2j+ 1)/2 appear in the first sum and their opposites in the second.
The maximal shift is then

k—1 k-3 k—2j+1
shiftm (jy =2( “-= 4 S22y T g, (49)
2 2 2
Suppose thak (1) is the hyperplane with this maximal shift (at distarjgé — j) outside
the permutahedron and parallelf) and that it belongs to the Kostant arrangeméﬁi).

The second step is to find a regi@hof A(AW) with a facet onH (1) that overlaps wittR.
If we replacer by a multiplema of itself, the partition of the permutahedron simply
scales up by a factor of;, and the polynomials attached to the regions, as polynomials
in 2 and 8, remain the same (because tt@ls of the chamber compleX® are cones).
The hyperplanes of the Kostant arrangements almost scale, except Bsliif factor.
Those shifts preserve the distance between the hyperplanes and the ones supporting the
facets of the permutahedron, even as theaeggrow since the separation between parallel
hyperplanes oﬂ;‘p) increases. Hence for a large enough multiplé ofne of the regions

R’ of Afn‘ﬁ) with a facet onH (m ) will overlap withm R. From now on we’ll assume that
A has been replaced by a suitably large multiple of itself.
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We are now in the setup of the above picture. The polynomiglin R and P(Y) on
R’ both give the multiplicities in the interior of their respective regions, and hence they are
equal provided thak N R’ contains sufficiently many points. We can assume that we have
scaledx sufficiently above so that this is the case. SitRé&’ has to vanish outside of the
permutahedron, it will vanish on the intersectionf®fwith the hyperplanes

Bocy +---+Boh=r1+---+Arj+1,

Boy + -+ Bogy=A1+---+A; + shiftM () — 1.

If the intersection ofR’ with these hyperplanes contains sufficiently many points (again,
we can scale. so that this is the caseP ¥ will have the defining equations of those
hyperplanes as factors, and hence so pll

Here we have assumdd is defined by (45) angt = yy v () for U =6({1, ..., j}),
V ={1,...,j}. If Fisdefined by (46), we get the sartiébutV ={k— j+1,...,k},and
the defining equationg, y — 1,...,y — shift™®(j)+1. O

We can lift this result to the weight polynomials associated to the cones of the
chamber compleg® . This will allow us to think of the linear factors dividing the weight
polynomials as polynomials both inandg.

Corollary 6.3. Let t be the cone of ¥ whose intersection witli.(1) gives domairR in
the previous theorem, arp its associated weight polynomial. ;v (1) + ¢ dividespg,
thenyy,v + ¢ dividesp.

We will call these families of linear factorgarallel linear factors This shows that
the smallest number of parallel linear factas obtained when considering facets of the
permutahedron normal to a permutatiorwafor w_1. In this case, we gét— 2 factorsin
the weight polynomials of the bounderegions on those facets. Fpr= |k/2], we get a
maximum of|k/2| (k — | k/2]) — 1~ k?/4 parallel linear factors. Since thg have degree
at most(kgl) ~k?/2 in B (regarding) as a parameter), we get linear factors accounting
for about half the degree of the iglt polynomials for those facets.

The fundamental weighb; =e1 +e2+--- 4+ ¢; — £(1,1,..., 1) has an orbit of size

(’]‘) and thus there are that many facets having a permutation a$ an outer normal (the
opposite parallel facets have the permutations,of; as normals). So the permutahedron
for generici = (A1, ..., Ak) hasZ’]‘;} (¥) = 2 — 2 facets, most of which have normals
corresponding to central values pf(i.e., close tolk/2]). The following table gives the
minimum numbers of parallel linear factors for different valueg ahd ;. In parentheses

are the numbers of facets having a permutatiom pbr w;—; as a normal. For example,

in slgC, the maximal degree of the weight polynomials is 21 and we expect that the
polynomials of regions with a facet on any of 14fthe 254 facets of the permutahedrato
have 14 parallel linear factors.
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#(facety maxdedpr) j=1 =2 j=3 j=4

slaC (Ag) 6 1 1 (6)

sl4C (Ag) 14 3 28 3 6

slsC (Ag) 30 6 3100  5(20)

slgC  (As) 62 10 4120 7300 8 (20

s7C  (Ag) 126 15 5(14) 9(42 11 (70)

slgC (A7) 254 21 6(16) 11(56) 14(112 15 (70)
slgC (Ag) 510 28 7(18 13(72 17(169 19(252

Theorem 6.2 only depends on the fact that using our description in the previous
section of the walls of the chamber complex for the Kostant partition function and
the combinatorial description of the permutahedron (Lemma 4.1), we can argue that
there will always be hyperplanes of Kostant arrangements parallel and close to the
facets of the permutahedron. In order toemd the factorization phenomenon inside
the permutahedron, we will need to use the complete description of the domains of
polynomiality for the weight multiplicity functin, obtained by sympléic geometry means
in Theorem 3.1.

6.2. Inside the permutahedron

We already discussed at the end of the previous section that the hyperplanes supporting
the walls partitioning the permutahedroregsrecisely the hyperplanes of the Kostant
arrangements without the shift factors. We will take advantage here of overlaps between
the improved domains of Section 3 and regions of the Kostant arrangements to show, not
that the weight polynomials themselves factor, but rather that as we jump between two
adjacent domains, the difference in the cep@nding weight polynomisexhibits parallel
linear factors. Given a facet between twoamjnt domains of the permutahedron, we will
see that we are able to find two hyperplanes of Kostant arrangements parallel to it and at
maximal distance on either side of it, and deduce from this a number of parallel linear
factors of the polynomial jump.

Definition 6.4. We will say that two domains aajacentf they have the same dimension
and a facet of one is a subset of a facet of the other, or equivalently if they intersect in a
nonempty polytope of dimension one less.

Theorem 6.5. Let P; and P, be two adjacent full dimensinal domains of polynomiality of
the permutahedron for a generic dominant weighdf s(; C, and suppose that the normal
to their touching facets is in the directian(w;) for someo € &;. If p1 and p; are the
weight polynomials o, and P2, andy is the defining equation of the wall separating
them, then the jump; — p2 either vanishes or has thak — j) — 1 linear factors

(y=s"+1).(y=s+2),.c..v.....(y+sT=2), (y +sT - 1)
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for some integers™, s* > 0 satisfying

sTHsT=jk— ). (50)

Proof. Suppose the touching facets Bf and P» lie on the hyperplane

:3u1+"'+:3uj=)tv1+"'+)tvjo

Then among the Kostant arrangement hyperplanes

Buy+ -+ Bu; = vy + -+ Ay, +Shift(V, W), WL ...k}, [W|=],

we can find a pair for which thé-shift is minimal and maximal by picking appropriate
subsetg¥. Clearly, the minimal shift-s~ will be nonpositive, and the maximal shift
nonnegative. In fact,

J J J J
st = max(ZSv,. - Zawi) =) &y, —min> by,
W i=1 i=1 i=1 W i=1

J J J J
S_Z_mv‘}n<' lavi_zawi>=mwaleaw,-_;5vi
1= 1= 1=

i=1

so that

J J J

+ - _ _ . _ — _

sT+s _mvgleawi mu|/n .Elawl._Zmu?leawi_](k ) (51)
1= 1= 1=

sinces = —8™V®"™S€ For k odd, thes; are integral, and hence so are ands™. When

k is even, the; are half-integers with odd numerators. Since we are adding/subtracting
an even number of them (2 to compute the shifts, we again get that ands™ are
integers.

We can find region®1 andQ2, R1 and R, of Kostant arrangements as in the following
diagram. We will think of these regions apen convex polytopes because in Lemma 4.3
the polynomials giving the multiplicities orhé regions of the Kostd arrangements are
only valid in the interior of the regions.
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We will let the corresponding polynomials, as givenBy’ in Eq. (32), beg1 andgs,
r1 andr respectively. Since we can assume that we have scalgufficiently (as in
Theorem 6.2), we have that = p1 = r1 andg2 = p2 = r2, sinceQ1 N P1 N R1 and
Q>N P> N Ry are large. Furthermoregy; andgz agree onP1 N Q2 and similarly, p2 and
r1 agree onP; N R1. Since P1 N Q2 and P, N Ry contain enough lattice points on the
bounded hyperplanes (dotted lines in the diagram), the differemcesg, and p2 — r1
have to vanish on those hyperplanes. Hence

pi—q2=(—s +1)(y—s 42 (y =1 -ha,
p2—ri=@+Dy+2---(y+s"—1)-h2 (52)

for some polynomial& andiy, unlesspy = g2 or p2 = r1, in which casep; = p2, since
p1=r1 andpz = ¢2. If we assume thap; # p2, we have that

pr=r2=(y—s" +1(r7 +2)--(y =D ha,
p2—p1=0+Dr+2) - (y+st—1)-h2 (53)

and sincep1 and p»> have to agree on the lattice points on the wall betwemand Ps,
their difference is also divisible by. Hence we get

p1L— p2= (y —s_)(y—s_—l—l)'o'yuo()/—i—s*'—l)(y—i—s*') -h3 (54)
forsomehs. O
Remark 6.6. As in Corollary 6.3, we can lift this result to the weight polynomials

associated to the cones of the chamber com@{€xand regard the parallel linear factors
as polynomials in both andg.
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7. Thechamber complexesfor sI3C (A2) and s14C (A3)

In this section we explicitly compute the chamber complexeskfer 3 andk = 4.
For k = 4, we find that the chamber complex does not optimally partition the domains
of polynomiality for the multiplicity function. InTheorem 7.4, we prove that the optimal
glued complex does agree with Theorem 3.2kfef 4.

7.1. The chamber complex foisC (A2)

Using the procedure described in Section 2 to write down the multiplicity function as a
single partition function in the cage= 3 (A2) gives that

m;.(B) = ¢k, (33 (2)) (55)

with
1 1 0 0 O Al — A2
0O -1 1 0 0O A 20— p1— B2
Es=|0 1 0 1 0 0| and Bg( )z Bi+pB2+r1 |. (56)
0 -1 0010 p o — Bu
0O -1 0 0O ro— B2

We can compute the chamber complex associatétst@nd intersect it with the space
~ A
B= {Bg(ﬁ)t AeR3 BeR® A+ i+ r3=0, /31+ﬁz+/33=0}. (57)

In that space we can apply

6 2 3 1 1
4 1l-3 2 3 1 1
l—_
By ~9|-3 -1 3 -5 4 (58)

-3 -1 3 4 -5

to rectify the cones of that complex to obtalf®. The full dimensional cones @¥® are
given by

3 =Ppogb, ay, c2,c3) T6=POb, a1, az,c3)
11 =posb, a1, ap,a3) T2 =Pogb,c1,c2,c3) T4=p0odb,az,c1.c3) 17 =Ppob.ay.az,c) (59)
75 = pogb, az, c1,c2) T8 =POsb,az,az,c1)

where the rays are

al=[27_17_17 21_11_1]1 C]_:[l, 11 _21 _21 17 1]1
a2=[27_17_17_17 21_1]1 b:[ls 07_17 Os 07 O]s C2=[1, 11 _21 17_27 1]1 (60)
az=[2,-1,-1,-1,-1,2], c3=[1,1-2,1,1 -2].
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The cones above are grouped into orbits under the action of the symmetric@saup
the B-coordinates. In general the set of cone€@? won't be closed under the action of
&y on theg-coordinates, even though the multiplicities under&heshould be invariant.

We can get the polynomial; corresponding ta; easily through interpolation, using
for example the Kostant partition function fdr, which has the simple form

min{a,b}+1 ifa,beN,

K(a, — b,—b) = .
@ —a+ ) [0 otherwise.

p3=1+r1—-B1 pe=1+r1+2r2+B3
p1=1+22—-23 p2=1+r1—%2 pa=1+r1—P2 pr=l+r1+i2+82
ps=1+11—-B3 pg=l+r1+ri2+p1

Note that even though they highlight the symmetries in ghis, these polynomials
are a little amiguous since they are defined up to the relatibps- A2 + A3 = 0 and
B1+ B2+ B3 =0, which allow for some substitutions to be made. To avoid any ambiguity,
we can rewrite them in terms of the fundamental weight bagis= %(2, -1,-1) and
w2 = %(1, 1, —2). Thenifx = lhw1 + low2 andB = biw1 + bowy, the polynomials take the
form

p3=l+%(211+12*2b1*b2) P6=1+%(11+212*b1*2b2)
p1=1+lp pp=1+l1 pa=1+3@1+bL+bi—by) pr=1+301+2—b1+by)
P5=1+%(211+12+b1+2b2) P8=1+%(11+212+2b1+b2)

The domains of polynomiality cé weight diagram for a giveh will be the (possibly
empty) polytopes; N L(x) fori =1, 2,..., 8, so there are at most eight of them, although
in practice at most seven appear at a time. We could obtain a symbolic description of
the domains of polynomiality fothe weight diagram of any of A, from the chamber
complex. Wheni is one of the fundamental weights, we get a triangle with constant
multiplicities inside; otherwise we get a hexagon with a (possibly empty) central triangle
in which the multiplicities are constant and decrease linearly outside. Figure 4 shows what
happens when we move from one fundamental weight to the other. The pictute fer
already well-known (see, for example, [5,18]).

Corollary 2.6 explains why the second and third diagrams, as well as the fifth and sixth
of Fig. 4 are variations of each other, anthymhe polynomials attached to each of the
seven regions are the same for each of these pairs of diagrams, Fbe cones; project
underp 4 to the three cones

ANAKRDT N

Fig. 4. Weight diagrams and their domains of polynomiality or.
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CO = p05((27 _17 _1)1 (11 17 _2)) = quwlv CUZ),
C1=pog(2, —1,-1), (1,0, —1)) = posw1, w1 + ®2),
C2=pog(1,0, —1), (1,1, —2)) = poSw1 + w2, w2).

We can see thaf'; and C; partition the indamental Weyl chambeTy of A, and
hencecf) consists ofCy, C2 and all their faces. Therefore for, there are only two
generic types of’s: A's with 12 < 0 (diagrams 2 and 3 on Fig. 4) and with A, > 0
(diagrams 5 and 6 on Fig. 4). The case= 0 corresponds to the regular hexagon, while
the degenerate casgs= 1, andi; = A3 correspond to the triangles. If we exprésm
terms of the fundamental weights= l1w1 + low2, these correspond ta < Ip, I1 > I2
andl1 = I respectively for the hexagons, ahd= 0 andl, = O for the degenerate cases
(triangles).

7.2. The chamber complex falrC (A3)

We can write
A
mx(ﬂ)=¢E4<B4< ))
B
with
0 1 1 1.0 0 0 0O 0 0O
1 -1 1 01 0 0 O0OO0O0O
0 1 0O 00O 1 0 O0O0OO0OTO
0 0 1 00 01 0O0O0O0
Eq=| 0 -1 -1 0 0 0OO1 0O OO and
-1 0 -2 00 OOO 1 O0O00OQ
-1 0 -1 0 0 0O0O OO 1 O00
-1 0 -1 0 0 0O0OOOOTI1IO0
1 -1 0 0 0 O 0O O0OO0OO0OO
A+ P+ B2+ B3
A2 — A3
AL — A2
2 A2 — A3
34( >= A2+2h3—B1—B2— B3
p 2h3— P~ P2
r3—p1
A3 — B2
A2 — B3

Remark 7.1. E4 is not unimodular. We do not know of a unimodular matrix $&4C that
would make the multiplicity function into a single partition function.
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For A3 we must use the computer to do most of the computations. A symbolic calculator
like Maple or Mathematica is especially usefHere we used Maple (versions 7 and 8) and
the packageonvex by Matthias Franz [9].

The setB™® of bases forEs has 146 elements, so there are 146 base cander
o € B®. These are 9-dimensional cones, however they collapse to 132 6-dimensional
cones when intersected with

~ A
B={B4<ﬁ>1 AeR* BeR* Ap+---4+14=0, ,31+~'+,34=0}.

The full chamber complex is the complex of all intersections of the 146 conR$,in
and it has 6472 full-dimensional cones. The chamber compléesi;pace has 1202 full-
dimensional (6-dimensional) conég, which we can rectify to get the chamber complex
C® in (r, B)-space with cones, k =1, ..., 1202. However, the 6-dimensional chamber
complex thus obtained is not closed under the action of the symmetric @gum the
B-coordinates.

Despite the fact that the chamber conxgeems to lack the symmetry propertydnwe
will see, as we find the polynomials attached to the domains of polynomiality, that there
is a way to regain it. We can compute the polynomial associated to each of these 1202
cones by interpolation, for example using the fact that De Loera and Sturmfels computed
the polynomials for the Kstant partition function for z in [25]. These 1202 polynomials
are not all distinct.

Observation 7.2. If we group together the top-dimensional cones fr¢m: k =
1,...,1202 with a particular polynomial, their union is always a convex polyhedral cone
again. Grouping cones this way yields a glued chamber compliex (i, 8)-space with
612conesGy, k=1,...,612 These cones for®4 orbits under the action o&,4 on the
B-coordinates.

Proof. Here is a description of the algorithm used to make this observation. Suppose that
{ti;, Tip, - - -» Tiy} CONSists of all the cones with a particular given associated polynomial,
and letr be the convex polyhedral cone spanned by the union of all their rays. We want to
prover =\, 7.

We can find an affine half-space whose intersection with each of these cones is non-
empty and bounded, so that we can work with truncated cones. The half-spacé
works. The union ofz;,, ..., 7, } will equal r if and only if the union of their truncations
gives the truncation of. The truncated cones are polytopes, and we can compute their
volume. We can check that the union of the truncationgof . ., 7;,, is the truncation of
T just by checking that the volumes match. We knowhéave disjoint interiors because
they are defined as the common refinement sklmnes, hence the volume of the union of
all these truncated cones is simply the sum of their volumes. If the computations are done
symbolically (in Maple), there is no dangérat truncated cones with very small volumes
could create round-off errors.

The volumes are compared symbolically for every family of cones corresponding to the
same polynomial. We glue together all the cones with the same polynomial, and observe
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that we still get a complex of convex polyhedral cones. This glued complex is invariant
under the action of4 on theg-coordinates. O

We now have two 6-dimensional chamber complaX&sandg, and we can construct
the complexes’f) andG, by first projecting all the cones throughy and then forming
their common refinement.

After transporting the hyperplane+ y + z + w = 0 of R* into the hyperplane = 0
through the orientation-preserving isometry

1 -1 -1 1
Lot -1 1
47511 1 -1 1)

-1 -1 -1 -1

(61)

we can work in the coordinatés, y, z) and look at the intersections of the complexes with
the hyperplane = 1 of R3.

Figures 5-7 show the complexes intersected with the hyperplan& and also the
complexes modulo the symmetky— —A™Y, which translates into a reflection along the
central (vertical) line of the complexes. This symmetry reflects the symmetry of the Dynkin
diagrams for4,,. Figure 8 shows that even though regions appear and disappear along the
lines of the complex (facets of the full-dimeéasal cones of the complexes), the complex
given by simply looking at the number of regions in the permutahedra is coarser.

Observation 7.3. For Az, only six generic cases occur. Generic permutahedra are always
partitioned into213, 229, 261, 277, 32&r 337regions. Degenerate cases occur along the
walls in Fig.6.

Projecting the cones of the glued compigxon A-space gives 62 distinct cones, 60 of
them corresponding to individual orbits under the actiogfon thes-coordinates. The
chamber complex 4, we get by taking their common refinement has 50 regions, or 25
modulo the symmetry. — —1"V. This complex classifies the combinatorial types.of
i.e., ther's with the same partitioned permutahedra and family of polynomials.

Fig. 5. The chamber complékf).
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[1,3,2]

[1,3,1] ¢

[1,2,1] ¢

[1,1,1] q

Fig. 6. The chamber complex, .

[0,1,0]

[1,4,2]
[1,5,3]
[0,2,1] [1.64]

[1,4,3]
[0,1,1]
[2.4,3
[1,2,2]
112,31 [0,1,2]
[2,2,3]

[1,1.2] [1,2,5]

[1,1,3]

[1,0,1]

[0,0,1]

Fig. 7. The chamber complex, for 1 < —X4 in terms of fundamental weights.

We now give a simple proof of Theorem 3.2 fdr; and show that regions of the
permutahedron given by (23) are as large as possible.

Theorem 7.4. For Az, the optimal partition of the permutahedron into domains of polyno-
miality for the weight multiplicities coincides with the partition of the permutahedron into
domains of polynomiality for the Duistermaat—Heckman measure.
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Fig. 8. The numbers of regions in the permutahedra.

Proof. We give a computer verified proof that for alln the fundamental Weyl chamber of
s[4C the intersection of with L(1) defines walls within the permutahedron as determined
by Theorem 3.1. We do this by expressing the walls of the permutahedron as the convex
hulls of subsets of its vertices. The following is an outline of our algorithm.

The full dimensional coneé€1, ..., Gg12 of the complexg, when intersected.(1),
subdivide the permutahedron into regions. For genkriG, N L(A) is either empty or
a 3-dimensional region of the permutahenlrFurthermore, a 2-dimensional facet of that
region will come from the intersection of a facEtof G, with L()), and an edge of that
2-dimensional facet will come from the intersection of a facef F with L(A), and finally
a vertex of that edge will come from the intersection of a facdt @fith L(1).

(1) SetF equal to the set of all facets of the cor@s, ..., Ge12.

(2) Classify the facets itF according to their normals: calf; the subset ofF consisting
of all the facets with normal directior;. Since each facet lies on a unique hyperplane,
and since all these hyperplanes go through the origin, two facets will lie on the same
hyperplane if and only if they have the same normals up to a scalar multiple. In our
case, we find that there are 37 distinct normal directions.

(3) SetkK; = UFe]:,- F and verify thatK; is again a convex polyhedral cone. The
verification is done by a truncation and volume comparison method similar to the
one used in Observation 7.2. The intersection of Khavith L(1) will be the walls
partitioning the permutahedron.

(4) For each, set); to be the set of facets of facets &f. The elements of; are three
dimensional cones.

(5) For each, identify the f € V; whose intersection witlk.(1) for generici is a point.

The convex hull of those points i&; N L(1). These points are all vertices of the
permutahedron, and the walls they define are exactly those of Eq. (23).

We will illustrate this last step on an example. We find that one ofitheonsists of
the 10 cones, which we will denoig, ..., fi0. One remarkable thing about the congs
is that the first four coordinates of their rays always correspond to one of the fundamental
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weights, while the last four correspond to a conjugate of the same fundamental weight.
That is true for allV;. We have

f1=pof(w1, ®1), (w2, 7 - w2), (@3, ®3)),
f2=poq (w1, w1), (w2, 7 - ®2), (w3, ¢ w3)),
f3=pog(w1,0 - 1), (2,7 - @2), (@3, ¢ - @3)),
fa=poq(w1,0 - w1), (2,7 - w2), (w3, w3)),
f5=poq(w1,0 - ®1), (W3, W3), (w3, W3)),
fo=po(w2, 7 - @), (w3, - w3), (w3, w3)),
f7=poq(w1,0 - w1), (w1,01), (@3, ¢ ®3)),
fa=poq (w1, w1), (@3,9 - ®3), (w3, w3)),
fo=poY(w1,0 - w1), (®1,01), (@3, ®3)),

flO = poq(wls o - wl)v (wls wl)s (0)2, T - 0)2))’

whereoc =(13), 71 =(23),¢ =2 4.

To find the intersection of one of these cones wiiti), we want to see whether there
is a linear combination of its rays with nonnegative coefficients that would lie(i. If
the rays ares, ..., ry, we are looking fous, ..., a; > 0 such that

alrl+a2r2+”'+asr5 =()"lv)"27)"37)"47*7*7*7*)1

or equivalently,

a1pa(ry) +azpa(rz2) + - -+ palasry) = (A1, A2, A3, A4),

Hence we will get vertices for thoses and f;'s such that € p,(f;). So we compute
the pa(f)):

pa(f1) =poswy, w2, w3), pa(fe) = poswe, w3),
pa(f2) =podwy, w2, 3), pA(f7) = poswy, w3),
pa(f3) =posw1, w2, w3), pa(fe) =poswy, w3),
pa(fa) =poswy, w2, w3), pa(fo) =posw1, w3),
pa(fs) =poswy, w3), pa(f10) = pos w1, w2).

Only the first four of the cones span the fundamental Weyl chamber; the other six won't
intersectL (1) for generich.

Observing that the last four coordinates of the rays offtfie can always be obtained
by applying a single permutation to the first four, we can rewfitef, f3, fa as
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fi=poy (w1, (23) - w1), (w2, (23) - w2), (w3, (23) - w3)).
f2=poq (w1, (243 - w1), (w2, (243 - w2), (w3, (243 - w3)),
f3=po(w1, (1243 - w1), (w2, (1243 w2), (w3, (1243 w3)),
fa=poy(w1, (123 - w1), (w2, (123 w2), (w3, (123 - w3)).

It then follows that

ANLG) = (2, (23)-2),
f2NL(3) = (2, (243 -2),
fANLA) = (A, (1243 1),
fanL)=(x (123 -2)

which means there will be a wall with vertices

(23)- 2= (A1, 23, A2, A4) = X/,
(123 -2 = (A3, A1, A2, 1a) = (12)2,
(243 -1 = (A1, 23, M4, A2) = (342,
(1243 -1 = (A3, A1, A4, 12) = (1 2)(3D)

in the permutahedron for. This wall is the convex hull o - 1" with W the parabolic
subgroup(1 2), (3 4)). All these vertices have the same scalar product ¢ith, —1, —1),
and thus they lie on the same hyperplane with northdl, —1, —1). They are also the only
points ofSy - A lying on that hyperplane (for generic).

This process is automated, and we can express all the walls in this fashion by repeating
this process for all the;’s. We finally check that these walls are the same as those that
partition the permutahedron for the DH-measurel

The set of domains for a given permutahedron is closed under the action of the Weyl
group, so they come into orbits. Out of the 64 orbits of cones in the chamber coghplex
at least 22 orbits (when there are 213 domains) and at most 31 orbits (when there are 337
domains) appear at a time.

7.3. Further observations oAz

With the chamber complex and all the weight polynomialsAgrin hand, we can test
whether the bounds on the number of parallel linear factors from Theorems 6.2 and 6.5 are
tight in this case. Fok = 4, and a generic dominant weight, we should be getting at least
two parallel linear factor in the directions conjugatedpor w3, and three parallel linear
factors in the directions conjugate 4, for both the weight polynomials in the boundary
regions and the jumps between adjacent regions.
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For generic., two full dimensional domains arelgcent if the corresponding cones in
the chamber complex are adjaterhis allows us to test for factorizations on the chamber
complex level and thus work with all at once, so to speak. We have verified that the
bounds are met exactly here: when extra linear factors occur, they are not part of the parallel
family

For nongeneric., we have to be careful when relating adjacency between regions of
the permutahedron and adjacency betweenon@s is because, in three dimensions for
example, it is possible for two cones to ttedong an edge but not along a face, and if we
cut them with a hyperplane going through thdge, their two-dimensional intersections
become adjacent because they have an @dgemmon. We get problems on the wall
A2 = A3 of the fundamental Weyl chamber, for instance. The weight polynomials in this
case all have the form(y + 1), and the jumps between adjacent cones always have the
form

Yo+ =Y (V' +)=@-v)y+v +1).

Hence we don'’t get parallel linear factors at all in this case. For the ¢asesi, and
A3 = A4, We get 49 or 61 domains generically (see [14] for a study of the Duistermaat—
Heckman function and its jumps for one of the 49 domain generic cases). The weight
polynomials are at most quadratic in this case, and we verify that we get two parallel
factors in every jump.

The zero weight does not always appear in the weight space decomposiidvubfor
A generic, there will be a non-empty domain of the permutahedron that contains the origin
(evenifitis not a weight). This domain is invariant under the action of the Weyl group and
we will call it the central domain

We can describe the generic central domainsAfgrThe diagram on the left in Fig. 9
shows the four types of domains fag < —Xi4. The light region corresponds to cubic
central domains. In the region next to it, we get truncated cubes: four vertices in tetrahedra
position in a cube are truncated, and we get six hexagonal faces and four triangular faces,
forming a polytope with 16 vertices. In the remaining two darker regions, we get tetrahedra,
in two different orientations (the central domain vanishes on the wall between them). When
the hyperplane supporting a wall goes thought the origin, the bounded part giving the wall

Fig. 9. Central domains according to the shapéhefgolytope (left) and theveight polynomials (right).
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also contains the origin, and the central domain then vanishes (degenerates to a single
point). This occurs wheh = —A™V, 2, =0 ori3 =0.

The behavior of the weight polynomials, as polynomials in botlnd 8, is slightly
different. For generio., we get only two of them (four if we don’t work modulo the
Dynkin diagram symmetry). The diagram on the right in Fig. 9 shows the separation. The
polynomial in the light region does not depend on theoordinates, thus showing that
permutahedra foA s obtained by perturbing around the permutahedra for the fundamental
weightsw1 andws have tetrahedral central domains over which the multiplicity function
is constant (for fixed\). Domains like these are callddcunary domains in [14]. For
A1 < —\4, the polynomials are

: 1
piohy — 502 =43+ 101 iz + 101~ 43 +2).

1
P =S — 2+ 1)
X (=13 — 223+ Azha — A2hg — Agha + A2 — Aa + 2 — 2h2(B1B283)),

whereh; is the complete homogeneous symmetric function:

ha(B1, B2, Ba) = Bf + B2 + B3 + B1B2 + B2B3 + P1Bsa.

Remark 7.5. Dealing with A4 is more difficult computationally. For example, the
permutahedron for the weight = § splits into 15230 regions, and this number is a
lower bound on the number of maximal cells of the chamber complex for the weight
multiplicities.
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