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Abstract

We use Gelfand–Tsetlin diagrams to write downthe weight multiplicity function for the Lie
algebraslkC (typeAk−1) as a single partition function. This allows us to apply known results a
partition functions to derive interesting properties of the weight diagrams. We relate this desc
to that of the Duistermaat–Heckman measure from symplectic geometry, which gives a large-sca
limit way to look at multiplicity diagrams. We also provide an explanation for why the we
polynomials in the boundary regions of the weight diagrams exhibit a number of linear factors.
symplectic geometry, we provethat the partition of thepermutahedron intodomains of polynomiality
of the Duistermaat–Heckman function is the same as that for the weight multiplicity function
give an elementary proof of this forsl4C (A3).
 2004 Elsevier Inc. All rights reserved.

1. Introduction

For a long time there has been a lot of interest, both in mathematics and ph
in finding ways to determine with what multiplicity a weight appears in the we
space decomposition of a finite-dimensional irreducible representation of a semis
Lie algebra. Although there is a multitude offormulas to compute these multiplicities
involving partition functions (Kostant’s formula), recursions (Freudenthal’s form
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counting paths (Littelmann’s formula), this is still a computationally hard problem.
typeA (SLkC, GLkC, SU(k)), these multiplicities are known to be the Kostka numb
which express the Schur symmetric functions in terms of the monomial symm
functions.

Here we explore the structure of the weight diagrams in typeA, not from a symmetric
functions perspective, but using an array of tools from combinatorics, convex geomet
symplectic geometry, such as Gelfand–Tsetlindiagrams, Kostant’s multiplicity formula
and the so-called “Quantization Commutes with Reduction” Theorem. We describ
the weight diagrams are partitioned into domains of polynomiality, andhow this is related
to the Duistermaat–Heckman function studied by symplectic geometers.

After a brief reminder about the structure of the Lie algebraslkC, we introduce our main
tools, Gelfand–Tsetlin diagrams and partition functions. Gelfand–Tsetlin theory provid
a way of computing weight multiplicities by counting certain combinatorial diagrams, or
equivalently, by counting the number of integer lattice points inside certain polytope
will use this and some notions from linear and integer programming to reduce this co
problem to evaluating a single partition function.

Theorem 2.1. For everyk, we can find integer matricesEk andBk such that the multipli-
city function forslkC can be written as

mλ(β) = φEk

(
Bk

(
λ

β

))
.

Expressing the multiplicities as a single partition function allows us to use genera
about partition functions and theirchamber complexes to derive interesting propertie
the weight diagrams. For example, the multiplicities have the following polynomiality
property.

Theorem 5.1. There is a chamber complexC(k) on which the weight multiplicity functio
is determined by polynomials of degree

(
k−1

2

)
in theβi , with coefficients of degree

(
k−1

2

)
in

theλj .

From this theorem we can deduce a pointwise scaling property (i.e., for fixedλ andβ).
This property (Corollary 5.2) was known already in the context of symmetric func
theory, where it was proved using a fermionic formula for the Kostka–Foulkes polyno
(see [20]). It shows that although the Gelfand–Tsetlin polytopes are not always integ
polytopes [24], their Ehrhart quasipolynomials are in fact always polynomials.

The partition of the weight diagram intoits domains of polynomiality can be describ
explicitly. The convex hull of a weight diagram is a permutahedron. There is in symp
geometry a function on the permutahedron, called the Duistermaat–Heckman fu
that approximates the weight multiplicities and is known to be piecewise polynomial. I
domains of polynomiality are convex subpolytopes of the permutahedron, and there
an explicit description of the partition in terms of walls separating the domains. U
known results on quantization and reduction of symplectic manifolds, we can prove th
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the Duistermaat–Heckman function and the weight multiplicity function give rise to
same partition of the permutahedron.

Theorem 3.2. The partitions of the permutahedron forsu(k) (or slkC) into its domains of
polynomiality for the weight multiplicities and for the Duistermaat–Heckman measur
the same. Namely, the walls are determined by convex hulls of the formconv(W · σ(λ))

where σ ∈ Sk and W is any parabolic subgroup ofSk generated by all reflection
corresponding to roots orthogonal to a conjugate of a fundamental weight.

In Kostant’s multiplicity formula, multiplicities are expressed as a sum of part
functions evaluated atk! points shifted by a factor depending on the choice of a pos
root system. We can take advantage of the apparent lack of symmetry of Kos
multiplicity formula to find interesting factorization patterns in the weight polynomi
of the boundary regions of the weight diagrams.

Theorem 6.2. Let R be a domain of polynomiality for the weight diagram of t
irreducible representation ofslkC with highest weightλ, andpR be its weight polynomial
Suppose thatR has a facet lying on the boundary of the permutahedron forλ that has
θ(ωj ) as its normal vector, for someθ ∈ Sk. If γ = γ (λ) is the defining equation of th
hyperplane supporting that facet, thenpR is divisible by thej (k − j) − 1 linear factors
γ + 1, γ + 2, . . . , γ + j (k − j) − 1, or γ − 1, γ − 2, . . . , γ − j (k − j) + 1.

The main tool for proving this theorem is a family of hyperplane arrangem
called Kostant arrangements, on whose regions we have different polynomials givi
multiplicities. The Kostant arrangement also provides a method for finding linear fact
the difference between the weight polynomialsof two adjacent regions. A generalization
the Kostant arrangements is also essential to the proof of Theorem 5.1, which esta
that although in general we get quasipolynomials in the chambers of the co
associated to a vector partition function, weget polynomials for the weight multiplicity
function in typeA.

Theorem 6.5. Let R1 andR2 be two adjacent top-dimensional domains of polynomialit
of the permutahedron for a generic dominant weightλ of slkC, and suppose that th
normal to their touching facets is in the directionσ(ωj ) for someσ ∈ Sk. If p1 andp2
are the weight polynomials ofR1 andR2, andγ is the linear functional defining the wa
separating them, then the jumpp1 − p2 either vanishes or has thej (k − j) − 1 linear
factors

(
γ − s− + 1

)
,
(
γ − s− + 2

)
, . . . , γ , . . . ,

(
γ + s+ − 2

)
,
(
γ + s+ − 1

)
for some integerss−, s+ � 0 satisfying

s− + s+ = j (k − j).
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Similar factorization phenomena were recently observed to hold for general vec
partition functions by Szenes and Vergne [31].

Finally, we explicitly compute the chamber complex forA3, and find it is not
optimal, but that we can glue together parts of it to obtain a simpler complex. We
deduce symbolically from the form of this complex that the optimal partitions of
permutahedron forA3 under the weights and the Duistermaat–Heckman measure a
same. Computing the chamber complex forA3 is nontrivial because of the complexity
the arrangement. To the best of our knowledge, these computations for generic domina
weights ofA3 have not been done. A study was done by Guillemin, Lerman and Ster
in [14] for some of the degenerate cases whenλ has a nontrivial stabilizer. The number
domains of polynomiality turns out to be significantly larger than they originally suspected

1.1. The Lie algebraslkC (typeAk−1)

The simple Lie algebraslkC is the subalgebra ofglkC
∼= End(Ck) consisting of traceles

k × k matrices overC. We will take as its Cartan subalgebrah its subspace of traceles
diagonal matrices. The roots and weights live in the dualh∗ of h, which can be identified
with the subspacex1 + · · · + xk = 0 of Rk. The roots are{ei − ej : 1 � i �= j � k}, and we
will choose the positive ones to be∆+ = {ei − ej : 1 � i < j � k}. The simple roots ar
thenαi = ei − ei+1, for 1� i � k − 1, and for these simple roots, the fundamental weig
are

ωi = 1

k
(k − i, k − i, . . . , k − i︸ ︷︷ ︸

i times

,−i,−i, . . . ,−i︸ ︷︷ ︸
k−i times

), 1 � i � k − 1. (1)

The fundamental weights are defined such that〈αi,ωj 〉 = δij , where〈· , ·〉 is the usual
dot product. The integral span of the simple roots and the fundamental weights a
root latticeΛR and the weight latticeΛW respectively. The root lattice is a finite inde
sublattice of the weight lattice, with indexk − 1.

For our choice of positive roots,

δ = 1

2

∑
α∈∆+

α =
k−1∑
j=1

ωk = 1

2

(
k − 1, k − 3, . . . ,−(k − 3),−(k − 1)

)
. (2)

The Weyl group forslkC is the symmetric groupSk acting on {e1, . . . , ek} (i.e.,
σ(ei) = eσ(i)), and with the choice of positive roots we made, the fundamental W
chamber will beC0 = {(λ1, . . . , λk):

∑k
i=1 λi = 0 andλ1 � · · · � λk}. The action of the

Weyl group preserves the root and weight lattices. TheWeyl orbitof a weightλ is the set
Sk · λ = {σ(λ): σ ∈ Sk}. We refer to the convex hull ofSk · λ as thepermutahedron
associated toλ. Weights lying in the fundamental Weyl chamber are calleddominant,
and we will call elements of the Weyl orbits of the fundamentals weightsconjugates of
fundamental weights.

The finite dimensional representations ofslkC are indexed by the dominant weigh
ΛW ∩ C0, and for a given dominant weightλ, there is a unique irreducible representat
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ρλ : slkC → gl(Vλ) with highest weightλ, up to isomorphism. Details about the
construction are well-known and can be found in [10] or [11], for example. We hav
weight space decomposition according to the action ofh

Vλ =
⊕

β

(Vλ)β. (3)

The weights of this representation (thoseβ ’s for which (Vλ)β �= 0) are finite in number
and they can be characterized as follows (see [18]): they are exactly the pointsβ of the
weight latticeΛW that lie within the convex hull of the orbit ofλ under the Weyl group
action, denoted conv(Sk · λ), and such thatλ − β lies in the root lattice. Hence

Vλ =
⊕

β∈(λ+ΛR)∩conv(Sk ·λ)

(Vλ)β. (4)

The multiplicity mλ(β) of the weightβ in Vλ is the dimension of(Vλ

)
β
, and all the

conjugates ofβ underSk have the same multiplicity. Theweight diagramof Vλ consists
of the weights ofVλ (as a subset ofΛW ) together with the data of their multiplicities.

There are several ways to compute weight multiplicities. An important one is Kos
multiplicity formula [21], which can be deduced from Weyl’s character formula
[18,29]). We first need to define the Kostant partition function given a choice of po
root system∆+:

K(v) =
∣∣∣∣{(kα)α∈∆+ ∈ N

|∆+|:
∑

α∈∆+
kαα = v

}∣∣∣∣, (5)

i.e.,K(v) is the number of ways thatv ∈ h∗ can be written as a sum of positive roots.
Kostant’s multiplicity formula [21] is then

mλ(β) =
∑

σ∈Sk

(−1)l(σ )K
(
σ(λ + δ) − (β + δ)

)
, (6)

wherel(σ ) is the number of inversionsσ . Kostant’s partition function and multiplicit
formula extend to all complex semisimple Lie algebras. See [18] for more details.

1.2. Gelfand–Tsetlin diagrams

Gelfand–Tsetlin diagrams were introduced by Gelfand and Tsetlin [12] as a w
index the one-dimensional subspaces ofthe (polynomial) representations of GLkC. Their
construction relies on a theorem of Weyl that describes how the restriction to GLk−1C

of an irreducible representation of GLkC breaks down into irreducible representations
GLk−1C (see [3,12,33]). They are equivalent to semistandard tableaux (see [13]), bu
have a “linear” structure that we will exploit.
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Definition 1.1. Let ν = (ν1, . . . , νm) andγ = (γ1, . . . , γm−1) be two partitions. We will
say thatγ interlacesν, and writeγ 	ν, if

ν1 � γ1 � ν2 � γ2 � ν3 � · · · � νm−1 � γm−1 � νm.

Theorem 1.2 (Weyl’s branching rule [13,33]).Let ρλ be the(polynomial) irreducible rep-
resentation ofGLkC with highest weightλ = λ1 � λ2 � · · · � λk � 0. The decompositio
of the restriction ofρλ to GLk−1C into irreducible representations ofGLk−1C is given by

ρλ|GLk−1C =
⊕
µ	λ

ρµ. (7)

After restricting ρλ to GLk−1C and breaking it into GLk−1C-irreducibles, we can
restrict to GLk−2C:

ρλ|GLk−2C = (ρλ|GLk−1C)|GLk−2C =
( ⊕

µ	λ

ρµ

)∣∣∣∣
GLk−2C

=
⊕
µ	λ

(ρµ|GLk−2C). (8)

Again, we can apply Weyl’s branching rule to eachρµ to break them into irreducibl
representations of GLk−2C to get

ρλ|GLk−2C =
⊕

ν 	µ	λ

ρν. (9)

We can keep going recursively by restricting further, and for convenience, let us d
by λ(m) = λ

(m)
1 � · · · � λ

(m)
m � 0 the partitions indexing the irreducible representati

of GLmC. We then get that

ρλ|GL1C =
⊕

λ(1) 	 ···	λ(k)=λ

ρλ(1) . (10)

Definition 1.3. A sequence of partitions of the formλ(1) 	 · · · 	λ(k) = λ is called a
Gelfand–Tsetlin diagramfor λ, and can be viewed schematically as

λ
(k)
1 λ

(k)
2 · · · λ

(k)
k−1 λ

(k)
k

λ
(k−1)
1 λ

(k−1)
2 · · · λ

(k−1)
k−1

. . .
... · · ·

λ
(2)
1 λ

(2)
2

λ
(1)

(11)
1
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(k)
j = λj and eachλ(i)

j is a nonnegative integer satisfying

λ
(i+1)
j � λ

(i)
j � λ

(i+1)
j+1 for 1 � i � k − 1, 1 � j � i. (12)

Let VD be the one-dimensional subspace ofVλ corresponding to a Gelfand–Tsetl
diagramD. It is shown in [33] thatVD lies completely within one weight space in t
weight space decomposition ofVλ: VD ⊆ (Vλ)β if

βm =
m∑

i=1

λ
(m)
i −

m−1∑
i=1

λ
(m−1)
i for 1 � m � k (13)

or, equivalently,

β1 + · · · + βm =
m∑

i=1

λ
(m)
i for 1� m � k. (14)

Hence Gelfand–Tsetlin diagrams forλ correspond to the same weight if all their ro
sums are the same. This discussion is summarized in the following theorem due to G
Tsetlin and Zelobenko.

Theorem 1.4 [12,33]. For λ = (λ1, . . . , λk), the number of Gelfand–Tsetlin diagram
with first row λ is the dimension of the irreducible representationVλ of GLkC with
highest weightλ. Furthermore, the multiplicitymλ(β) of the weightβ in the irreducible
representation ofGLkC with highest weightλ is given by the number of Gelfand–Tset
diagrams with first rowλ such that Eq.(13) (or (14)) is satisfied.

Two irreducible representationsVλ and Vγ of glkC restrict to the same irreducib
representation ofslkC if λi − γi is some constant independent ofi for all i. Hence we
might as well require that theλi sum up to zero. However, normalizing the sum this w
can introduce fractional values ofλ, so we’ll have to translateλ back to integer value
when writing down Gelfand–Tsetlin diagrams for those representations, or, equivalen
translate the integer lattice along withλ, so that the inequalities

λ
(i+1)
j � λ

(i)
j � λ

(i+1)
j+1 for 1� i � k − 1, 1 � j � i,

always have

λ
(i+1)
j − λ

(i)
j ∈ N and λ

(i)
j − λ

(i+1)
j+1 ∈ N.

There is a geometrical way to view the enumeration of the number of Gelfand–T
diagrams for a givenλ. With λ(k) = λ fixed, we can let all the other variables{λ(m)

i : 1 �
i � m, 1 � m < k} be real variables. The system of inequalities (12) among the entri
Gelfand–Tsetlin diagrams, when viewed over thereals, defines a rational polytope, call
the Gelfand–Tsetlin polytope forλ and denoted GTλ. GTλ has dimension at most

(
k
)
,
2



258 S. Billey et al. / Journal of Algebra 278 (2004) 251–293

this

tly

en

ebras
s

inear
imple

r

f

t the
he
non.
d and
ke a

er

tition
n

and equal to that number if theλi ’s are distinct. We can consider the intersection of
polytope with the affine subspace obtained by fixing a weightβ (fixing the row sums
using Eqs. (13) or (14)). We also get a rational polytope this way, called theGelfand–
Tsetlin polytope forλ andβ and denoted GTλ,β . Its dimension is at most

(
k−1

2

)
. Kirillov

conjectured in [20] that the polytopes GTλ,β are integral polytopes, but this was recen
disproved by De Loera and McAllister [24].

The upshot is that integer solutions to the Gelfand–Tsetlin diagram constraints th
translate into integer points inside thepolytopes, hence the number of Gelfand–Tsetlin
diagrams of weightβ for λ is the number of integer points in the polytope GTλ,β .

1.3. Partition functions and chamber complexes

Partition functions arise in the representation theory of the semisimple Lie alg
through Kostant’s formula for the multiplicities (6). Kostant’s partition function send
a vector in the root lattice to the number of ways it can be written down as a l
combination with nonnegative integer coefficients of the positive roots, and this is a s
example of a more general class of functions, calledvector partition functions.

Definition 1.5. Let M be ad ×n matrix over the integers, such that kerM ∩R
n
�0 = 0. The

vector partition function(or simplypartition function) associated toM is the function

φM :Zd → N, b �→ ∣∣{x ∈ N
n: Mx = b

}∣∣.
The condition kerM ∩ R

n
�0 = 0 forces the set{x ∈ N

n: Mx = b} to have finite size, o
equivalently, the set{x ∈ R

n
�0: Mx = b} to be compact, in which case it is a polytopePb,

and the partition function is the number of integral points (lattice points) inside it.
Also, if we let M1, . . . ,Mn denote the columns ofM (as column-vectors), andx =

(x1, . . . , xn) ∈ R
n
�0, thenMx = x1M1 + x2M2 + · · · + xnMn and for this to be equal tob,

b has to lie in the cone pos(M) spanned by the vectorsMi . So φM vanishes outside o
pos(M).

It is well-known that partition functions are piecewise quasipolynomial, and tha
domains of quasipolynomiality form a complexof convex polyhedral cones, called t
chamber complex. Sturmfels gives a very clear explanation in [30] of this phenome
The explicit description of the chamber complex is due to Alekseevskaya, Gelfan
Zelevinskĭı [1]. There is a special class of matrices for which partition functions ta
much simpler form. Call an integerd × n matrix M of full rank d unimodularif every
nonsingulard × d submatrix has determinant±1. For unimodular matrices, the chamb
complex determines domains of polynomiality instead of quasipolynomiality [30].

It is useful for what follows to describe how to obtain the chamber complex of a par
function. LetM be ad × n integer matrix of full rankd andφM its associated partitio
function. For any subsetσ ⊆ {1, . . . , n}, denote byMσ the submatrix ofM with column
setσ , and letτσ = pos(Mσ ), the cone spanned by the columns ofMσ . Define the setB of
basesof M to be

B = {
σ ⊆ {1, . . . , n}: |σ | = d and rank(Mσ ) = d

}
.



S. Billey et al. / Journal of Algebra 278 (2004) 251–293 259

f

atrix

e
ts,

basis
an

is

s
rs for
e

mber
B indexes the invertibled × d submatrices ofM. The chamber complexof φM is the
common refinement of all the conesτσ , as σ ranges overB (see [1]). A theorem o
Sturmfels [30] describes exactly how partition functions are quasipolynomial over the
chambers of that complex.

1.4. The chamber complex for the Kostant partition function

If we let MAn be the matrix whose columns are the positive roots∆
(An)
+ of An, written

in the basis of simple roots, then we can write Kostant’s partition function in the m
form defined above as

KAn(v) = φMAn
(v).

Consider for example the simple Lie algebrasl4C, or A3. The positive roots ar
∆

(A3)+ = {ei − ej : 1 � i < j � 4}. Writing the positive roots in the basis of simple roo

we have∆(A3)+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}. This gives

MA3 =
( 1 0 0 1 0 1

0 1 0 1 1 1
0 0 1 0 1 1

)

which has the bases

B = {123,125,126,134,135,136,145,146,234,236,245,246,256,345,356,456},
where we’re writingi1i2i3 for {i1, i2, i3}.

All the cones corresponding to these bases are contained in the first cone with
{1,2,3} which is just the positive octant inR3. To picture the chamber complex, we c
look at the intersection of these cones with the hyperplanex + y + z = 1. Figure 1 shows
the cones given by the bases ofB, while Fig. 2 shows their common refinement (th
originally appeared in [25]). Finally, since it is readily checked thatMA3 is unimodular,
this shows that the Kostant partition function forA3 has 7 domains of polynomiality. It i
an open problem mentioned by Kirillov in [20] to determine the numbers of chambe
the Kostant partition functions for the Lie algebrasAn. De Loera and Sturmfels [25] hav
computed the numbers forn � 6 and computed the polynomial associated to each cha
for n � 5.

Fig. 1. Basis cones for the Kostant partition function ofA3.
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Fig. 2. Chamber complex for the Kostant partition function ofA3.

The following lemma is a well-known fact aboutMAn and can be deduced from gene
results on matrices with columns of 0’s and 1’s where the 1’s come in a consecutive blo
(see [27]).

Lemma 1.6. The matrixMAn is unimodular for alln.

MAn unimodular means that the Kostant partition functions forAn is polynomial instead
of quasipolynomial on the cells of the chamber complex. In general, forM unimodular, the
polynomial pieces have degree at most the number of columns of the matrix minus its ran
(see [30]). In our case,MAn has rankn and as many columns asAn has positive roots(
n+1

2

)
. Hence the Kostant partition function forAn is piecewise polynomial of degree

most
(
n+1

2

) − n = (
n
2

)
.

Remark 1.7. In view of Kostant’s formula for the weight multiplicities (6), this means t
the multiplicity functionmλ(β) for An is piecewise polynomial of degree at most

(
n
2

)
in

theβ-coordinates if theλ-coordinates are fixed, or degree
(
n
2

)
in theλ-coordinates if the

β-coordinates are fixed. So we can regard it as a piecewise polynomial function of d(
n
2

)
in the βi ’s, with coefficients of degree

(
n
2

)
in the λj ’s. This will be made precise i

Sections 4 and 5.

From now on, we will be interested in the multiplicity function forslkC, of typeAk−1,
and thus use the results above withn = k − 1.

2. The multiplicity function as a single partition function

Our first theorem presents a new conceptual approach to computing multiplicities
approach is efficient for largeλ in low ranks. It has the additional advantages of allow
us to use known facts about partitions functions.
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Theorem 2.1. For everyk, we can find integer matricesEk andBk such that the multiplicity
function forslkC can be written as

mλ(β) = φEk

(
Bk

(
λ

β

))
. (15)

Proof. Consider a Gelfand–Tsetlin diagram where we will think ofλ = (λ1, . . . , λk) and
β = (β1, . . . , βk) as parameters, with the conditions that

∑k
i=1 λi = ∑k

i=1 βi = 0. The

variables in the diagram areλ(i)
j with 1 � i � k − 1, 1� j � i. Each of these

(
k
2

)
variables

is wedged between two entries at the level above, so we get a system of 2
(
k
2

) = k(k − 1)

inequalities. Using Eq. (14), relating the row sums to theβi ’s, we can get rid of thek − 1
variablesλ(1)

1 , λ
(2)
2 , . . . ,λ(k−1)

k−1 .

λ1 λ2 · · · · · · λk−1 λk (β1 + · · · + βk = 0)

λ
(k−1)
1 λ

(k−1)
2 · · · λ

(k−1)
k−2 λ

(k−1)
k−1 (β1 + · · · + βk−1)

. . .
...

... · · ·
λ

(3)
1 λ

(3)
2 λ

(3)
3 (β1 + β2 + β3)

λ
(2)
1 λ

(2)
2 (β1 + β2)

λ
(1)
1 (β1)

(16)

The remaining variables (boxed in the above diagram) areλ
(i)
j with 1 � i � k − 1,

1 � j � i − 1 and there are
(
k−1

2

)
of them. To get a system in partition function for

we need to transform the inequalities into equalities satisfied by nonnegative var
however theλ(i)

j can take negative values. Let

s
(i)
j = λ

(i)
j − λ

(i+1)
j+1 1� i � k − 1, 1 � j � i − 1

be the differences between the variables and the ones immediately above and to t
of them, recalling thatλ(k)

j = λj . Upon doing the substitution in the system of inequalit(
k−1

2

)
of the inequalities simply becomes(i)

j � 0 because of Eq. (12). So we are left with
system of

N = k(k − 1) −
(

k − 1

2

)
= 1

2
(k − 1)(k + 2)

inequalities in theK = (
k−1

2

)
nonnegative and integralvariabless(i)

j , which we will relabel
s1, . . . , sK for convenience.

The final step is to transform the inequalities into equalities. To this effect, we
each inequality in the form
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am1s1 + am2s2 + · · · + amKsK �
k∑

j=1

bmjλj +
k∑

j=1

cmjβj ,

for 1 � m � N and integersam1, . . . , amK , bmj , cmj (1� j � k).
We introduce a slack variable for each inequality to turn it into an equality:

am1s1 + am2s2 + · · · + amKsK + sK+m =
k∑

j=1

bmjλj +
k∑

j=1

cmjβj .

The slack variablessK+1, . . . , sK+N are nonnegative, just like the previousK si , and
integral solutions to the system of inequalities will correspond to integral solutions to th
system of equalities, sosK+1, . . . , sK+N are not only nonnegative but integral.

Finally, we can write the system of equalities in matrix form:

 a11 · · · a1K

...
. . .

... IN

aN1 · · · aNK


︸ ︷︷ ︸

Ek



s1
...

sK
sK+1

...

sK+N


=


∑k

j=1 b1jλj + ∑k
j=1 c1jβj

...∑k
j=1 bNjλj + ∑k

j=1 cNjβj


︸ ︷︷ ︸

Bk

(
λ

β

)
. (17)

The result follows, since the numbermλ(β) of integral solutions to the Gelfand–Tsetl
inequalities is the number of all integral nonnegative solutions to this matrix system.�

The partition functionφEk in the above theorem lives on a larger dimensional space tha
the one we need. It takes values inRN = R(k−1)(k+2)/2, whereas the part that interests
the space given byBk

(
λ
β

)
as theλi andβj range overR, has dimension 2k − 2. Let

B̃ =
{

Bk

(
λ

β

)
: λ ∈ R

k, β ∈ R
k,

k∑
i=1

λi =
k∑

i=1

βi = 0

}
, (18)

then the only part of the chamber complex that is relevant to the multiplicity functi
its intersection with̃B. Since the chamber complex is obtained as the common refine
of the base cones, we will get the same thing if we find the refinement of the base
and then intersect the result with̃B , or intersect the base cones with̃B first and then find
the common refinement of those restricted base cones. Since we only need the re
chamber complex, this simplifies the computation because we have to deal with(2k − 2)-
dimensional cones instead of(k − 1)(k + 2)/2-dimensional ones. Another bonus we
from working onB̃ is that on this space,Bk is an invertible transformation, so we c
rectify the cones to(λ,β)-coordinates. In effect, we remove the coordinate “twist” du
matrixBk .
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Definition 2.2. We will denote byC(k) this rectified(2k − 2)-dimensional complex in
(λ,β)-coordinates.

BecauseEk is not unimodular in general, the associated partition function wil
quasipolynomial on the cells of the chamber complex. We will prove in Section 5 tha
actually polynomial on the cells of the complex. As such, we will from now on refer to
domains of quasipolynomiality of the multiplicity function as domains of polynomiality.

Remark 2.3. The multiplicity function also satisfies another sort of polynomiality proper
There are many ways to think of fixed typeA dominant weightsλ andβ as living inslrC

for any sufficiently larger. It is known (see for example [4,19]) that ifm(r)
λ (β) is the

multiplicity of β in the irreducible representationVλ of slrC, thenm
(r)
λ (β) is given by a

polynomial function inr, for r large enough. Bounds on the degree of this polynomia
also given. This result is shown to extend to the other classical groups [19] and al
classical affine Kac–Moody algebras [4]. In ourinvestigation of the weight multiplicities
we instead fix the rank of the Lie algebra and study the polynomial dependence inλ

andβ variables.

Definition 2.4. For everyλ in the fundamental Weyl chamber, let

L(λ) = {
(λ1, . . . , λk, β1, . . . , βk): βi ∈ R

}
. (19)

Note that this space is really(k − 1)-dimensional since
∑

j βj = 0. Define also the
projection

pΛ : (λ1, . . . , λk, β1, . . . , βk) �→ (λ1, . . . , λk). (20)

Remark 2.5. The intersection ofC(k) with L(λ) will give domains of polynomiality for
the weight diagram of the irreducible representation ofslkC with highest weightλ. The
partition into domains that we get this way, however, is not optimal, as shown forsl4C

in Section 7. Some adjacent regions have the same weight polynomial and their union
again a convex polytope, so they can be glued together to yield a larger domain.

Corollary 2.6. Let C(k)
Λ be the chamber complex given by the common refinement o

projectionspΛ(τ) of the cones ofC(k) ontoR
k . ThenC(k)

Λ classifies theλ’s, in the sense
that if λ andλ′ belong to the same cell ofC(k)

Λ , then all their domains are indexed by t
same subsets of cones fromC(k), and therefore have the same corresponding polynom

Proof. We can index the top-dimensional domains by the top-dimensional conesτ of C(k).
The domain indexed by coneτ is present in the weight diagram (permutahedron) forλ if
and only ifλ ∈ pΛ(τ). �
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3. Domains of polynomiality via Duistermaat–Heckman theory

The chamber complex for the multiplicity function can be used to identify dom
of polynomiality. However, these domains arenot guaranteed to be as large as poss
as seen in the examples of Section 7. In this section we improve the partition
permutahedron into domains of polynomiality by identifying it as a bounded pla
arrangement that appears in symplectic geometry. We begin by introducing the symplec
setup corresponding to the special case of typeA multiplicities. Then we define th
Duistermaat–Heckman function via an integral. This function is piecewise polyno
with natural domains of polynomiality in terms of Weyl group orbits. Finally, we wil
use a powerful theorem of Meinrenken [26] and Vergne [32], the so-calledQuantization
Commutes with Reduction Theorem, to show that the multiplicity function can be writte
locally as a very similar integral with the same domains.

Let G = SU(k), T the Cartan subgroup ofG, g and t their Lie algebras,t∗+ the
fundamental Weyl chamber andΛW ⊂ t∗ the weight lattice ofG. Forλ ∈ t∗+ ∩ΛW , we will
denote by∆λ the convex hull of the Weyl group orbit ofλ in t∗ (i.e., the permutahedro
associated toλ). Let Oλ = G · diag(λ) be the coadjoint orbit forλ. We can viewOλ as the
set ofk × k Hermitian matrices with eigenvalues{λ1, . . . , λk}. By a theorem of Schur an
Horn [17,28] (or Kostant’s convexity theorem [23], which extends the result to all com
Lie groups),∆λ is the image of the coadjoint orbitOλ with respect to the projection map

π :g∗ → t∗. (21)

The coadjoint orbitsOλ are the geometric counterpart to the irreducible representatio
G with highest weightλ. Note, the multiplicities for irreducible representations for SU(k)

and SL(k) are the same.
ConsiderM = Oλ and letΦ :M → t∗ be the restriction ofπ to M. In this case,Φ is

the moment map of the symplectic manifoldM under theT action. The set∆reg ⊂ ∆λ of
regular values ofΦ decomposes into a disjoint union of its connected components:

∆reg=
⋃

∆i (22)

and each∆i is an open convex polytope by a generalization of Kostant’s convexity the
due to Atiyah [2] and Guillemin–Sternberg [15]. In fact, the singular values ofΦ have the
following nice combinatorial description. This theorem first appeared in Heckman’s the
[16]

Theorem 3.1 ([14, Theorem 5.2.1], [16]).The singular points of the moment m
Φ :M → t∗ are the convex polytopes

conv
(
W · σ(λ)

)
, (23)

where σ ∈ Sk and W is any parabolic subgroup ofSk generated by all reflection
corresponding to roots orthogonal to a conjugate of a fundamental weight.
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In other words, the∆i ’s are the regions in the arrangement given by slicing
permutahedron by bounded hyperplane regions parallel to oneof its exterior facets which
pass through orbit points. See for example Fig. 4 in Section 7. Note, this is not a hype
arrangement inside a polytope since the convex hulls do not necessarily extend
boundary of the permutahedron.

Duistermaat and Heckman have shown that much of the geometry of coadjoint
can be determined simply by studying the∆i ’s. Forµ ∈ ∆i , thesymplectic reductionof M

at the regular valueµ of Φ is defined by

Mµ = Φ−1(µ)/T . (24)

For arbitraryG, the reduced spaceMµ of M at a regular value ofΦ is an orbifold, but for
SU(k) this orbifold is a compact Kähler manifold whose symplectic form we will denot
ωµ [7]. Duistermaat and Heckman [7] have shown thatMµ

∼= Mµ0 as complex manifold
for any pairµ0,µ ∈ ∆i . Furthermore, they have also shown the linear variation formula

ωµ = ωµ0 + 〈µ − µ0, c〉, (25)

wherec ∈ t ⊗ Ω2(Mµ) is the Chern form of the principalT -bundleΦ−1(µ) → Mµ.
Therefore, they use this fact about the symplectic forms to show that, forMµ of dimen-
sion 2d , the symplectic volume function

f DH
λ (µ) =

∫
Mµ0

expωµ =
∫

Mµ0

ωd
µ

d! (26)

is a polynomial function on∆i , called theDuistermaan–Heckman polynomial. Note that
the only aspect of this integral that depends specifically onµ, and not just on which
connected component of regular values contains it, is the symplectic form wh
determined by (25). From the integral, one can show that the degrees of these polyn
are less than or equal to(dimM)/2− dimG.

Using a theory of quantization initiated by Kostant, Kirillov and Souriau (see [
for instance), we can apply the same reasoning used by Duistermaat and Heckma
multiplicity function.

Theorem 3.2. The partitions of the permutahedron forsu(k) (or slkC) into its domains of
polynomiality for the weight multiplicities and for the Duistermaat–Heckman measur
the same. Namely, the domains are the connected components of regular points det
by (23).

Proof. Let Td(Mµ0) be the Todd form ofMµ0. The Quantization Commutes wi
Reduction Theorem [26,32] asserts that forµ ∈ ∆i ,

mλ(µ) =
∫

Mµ

(expωµ)Td(Mµ0). (27)
0
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The right hand side is the Hirzebruch–Riemann–Roch number ofMµ. The only factor in
the integral which depends onµ is the symplectic form, everything else depends only
the region containingµ. Thus by (25),mλ(µ) is a polynomial function ofµ on∆i as with
the Duistermaat–Heckman measure.�
Remark 3.3. This proof implies that the optimal domains of polynomiality for t
multiplicity function must be unions of the∆i ’s. Guillemin, Lerman and Sternberg [1
have shown that this partition is optimal for the Duistermaat–Heckman measu
showing that the difference between thepolynomials in two adjacent regions is nonze
We conjecture that this partition is also optimal for the multiplicity function. This has b
confirmed up to SL4C.

As further evidence for the conjecture, we note that on a given domain, the w
polynomial and the Duistermaat–Heckman polynomial in (26) have the same leadin
since

Td(Mµ) = 1+
d∑

j=1

τj (28)

with τj ∈ Ω2j (Mµ0) in the de Rham complex.

Remark 3.4. It is a very interesting open problem to count the regions in the permu
dron subdivided according to Theorem 3.1. This is the analog of Kirillov’s question fo
the Kostant partition function mentioned in Section 1.4. We have determined all the r
counts for SL4C in Fig. 8.

There are many links between the weight multiplicities and the Duistermaat–Hec
function. For example, Dooley, Repka and Wildberger [6] provide a way to go from
weight diagram forλ to the Duistermaat–Heckman measure forOλ+δ :

f DH
λ+δ =

∑
β weight ofVλ

mλ(β)f DH
δ . (29)

Also, if ν is the Lebesgue measure ont∗, normalized so that the parallelepiped given
the simple root vectors has unit measure, we define theDuistermaat–Heckman measureto
be the productf DHν. Now for eachn ∈ N construct the discrete measure

νn = 1

dimVnλ

∑
β weight of Vnλ

mnλ(β)δβ/n, (30)

whereδx is a point mass atx andVnλ is the irreducible representation ofsu(k) with highest
weight nλ. Then Heckman [16] proved thatνn converges weakly to the Duistermaa
Heckman measure asn → ∞.
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Furthermore, the Duistermaat–Heckman function from above can be computed
following way (see [14]): its value at a point(λ,β) is obtained by using Kostant
multiplicity formula withδ = 0 and a deformation of Kostant’s partition function that ta
the volume of the polytopes{(kα)α∈∆+ ∈ R

|∆+|
�0 :

∑
α∈∆+ kαα = v} instead of their numbe

of integral points.

4. The Kostant arrangements

In this section, we will construct a hyperplane arrangement whose regions are a
domains of polynomiality for the multiplicity function. This partition into domains wi
be unlike the ones obtained in Remark 2.5 and Theorem 3.1 in that it is not invariant
rescalingλ and β . We will deduce the form of this arrangement from a closer loo
Kostant’s multiplicity formula (6) and its chamber complex defined in Section 1.4.

Lemma 4.1. The set of normals to the facets of the maximal cones of the chamber co
of the Kostant partition function ofAn consists of all the conjugates of the fundamen
weights.

Proof. The facets of the maximal cones of thechamber complex span the sam
hyperplanes as the facets of the base cones whose common refinement is the cham
complex. Base cones correspond to sets ofn linearly independent positive roots. Fixin
a particular base cone spanned by{γ1, . . . , γn}, consider the undirected graphG on
{1, . . . , n + 1} where(i, j) is an edge ifei − ej = γm for somem. The fact that theγj ’s
are linearly independent implies thatG has no cycles. SoG is a forest, and since it ha
n + 1 vertices andn edges (one for eachγj ), it is actually a tree. Suppose now we remo
γj = es − et and want to find the normal of the hyperplane spanned by the otherγi ’s. The
graphG with the edge(s, t) removed consists of two treesT1 andT2. List {1, . . . , n + 1}
in the form

σ : i1, i2, . . . , ij−1, s︸ ︷︷ ︸
vertices ofT1

, t, ij , ij+1, . . . , in+1−2︸ ︷︷ ︸
vertices ofT2

,

where we will think ofσ as a permutation in one-line form.
Now let α′

i = eσ(i) − eσ(i+1) and note thatα′
j = es − et = γj . The set{α′

1, . . . , α
′
n}

is a root system basis because it is the image under the action ofσ−1 of the original
simple rootsαi = ei − ei+1. Observe that every edge inT1 can be expressed as a su
of α′

1, . . . , α
′
j−1, and every edge inT2 as a sum ofα′

j+1, . . . , α
′
n, so that allγi ’s in

{γ1, . . . , γ̂j , . . . , γn} can be expressed as linear combinations ofα′
1, . . . , α̂

′
j , . . . , α

′
n. The

normal for the corresponding hyperplane will therefore be thej th fundamental weightω′
j

for the basis{α′
1, . . . , α

′
n} = σ · {α1 . . . , αn}.

Conversely, given any fundamental weightω′
j for the root system basisσ · {α1 . . . , αn}

(or equivalently,σ−1 · ωj , whereωj is thej th fundamental weight for the standard simp
roots), we want to show it can occur as the normal to a hyperplane. LetH be a hyperplane
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separating the standard positive roots from the negative ones. For eachα′
i = σ · αi , we

can pick a signεi such thatεiα
′
i is on the positive side ofH . Hence{ε1α

′
1, . . . , εnα

′
n} is a

linearly independent subset of the set of standard positive roots, and thus it corresp
one of the base cones ofMAn . The corresponding graph is a path since we have a sy
of simple roots (up to sign reversal). Removingεjα

′
j and applying the above procedu

with the order given by the path gives thatω′
j occurs as the normal of the correspond

hyperplane. �
To compute multiplicities forslkC using Kostant’s formula, we look at the poin

σ(λ+δ)−(β +δ), asσ ranges over the Weyl groupSk . Some of these points will lie insid
the chamber complex for the Kostant partition function and we compute the multip
by finding which cells contain them and evaluating the corresponding polynomials at
points. Starting with genericλ andβ , none of the pointsσ(λ + δ) − (β + δ) will lie on
a wall of the chamber complex of the Kostant partition function, and if we moveλ and
β around a little in such a way that none of theσ(λ + δ) − (β + δ) crosses a wall, we
will obtain the multiplicity for the newλ andβ by evaluating the same polynomials.
there is a neighborhood of(λ,β) on which the multiplicity function is given by the sam
polynomial in variablesλ andβ .

Lemma 4.1 describes the walls of the chamber complex for the Kostant pa
function in terms of the normals to the hyperplanes (though the origin) supportin
facets of the maximal cells. Now a pointσ(λ + δ) − (β + δ) will be on one of those walls
(hyperplane though the origin) when its scalar product with the hyperplane’s norma
θ(ωj ), vanishes, that is when

〈
σ(λ + δ) − (β + δ), θ(ωj )

〉 = 0. (31)

For anyλ, consider the arrangement of all such hyperplanes for 1� j � k and σ ,
θ ∈ Sk . For β andβ ′ in the same region of this arrangement and any fixedσ ∈ Sk , the
pointsσ(λ + δ) − (β + δ) andσ(λ + δ) − (β ′ + δ) lie on the same side of every wall o
the chamber complex for the Kostant partition function. Figure 3 (on the left) show
arrangement we get forλ = (11,−3,−8) in A2, with and without the weight diagram.

In view of the invariance of the multiplicities under the action of the Weyl gro
Kostant’s formula has to give the same thing if we replaceβ byψ(β), ψ ∈ Sk. Replacingβ
by ψ(β) in Eqs. (31) above yields another hyperplane arrangement, which we will deno
byA(ψ)

λ . Hence for eachλ, we get a family of arrangements indexed byψ ∈ Sk, which we
will call the Kostant arrangementsfor λ. Figure 3 (on the right) shows the superposit
of those arrangements forλ = (11,−3,−8) asψ ranges over the Weyl group.

Suppose the chamber complex for the Kostant partition function forslkC hasr(k) full
dimensional cones. We will choose a labeling of these regions with the integers 1, . . . , r(k)

once and for all, and let the associated polynomials bep1, . . . , pr(k). Recall, these ar
polynomials of degree

(
k−1

2

)
on the subspacex1 + · · · + xk = 0 of Rk . We will also label

the exterior of the chamber complex by 0 and let its polynomial be the zero polynomip0.
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Fig. 3. Kostant arrangementA(id)
(11,−3,−8)

for A2 (left). Superposition of the Kostant arrangementsA(ψ)
(11,−3,−8)

for all choices ofψ (right).

Definition 4.2. For genericλ andβ , let v(ψ)
σ (λ,β) (or justv(ψ)

σ ) be the label of the regio
containing the pointσ(λ + δ) − (ψ(β) + δ) (this label is unique for genericλ andβ).
Define thetypeof λ andβ to be the vector

Type(ψ)(λ,β) = (
v(ψ)
σ

)
σ∈Sk

,

for some fixed total order onSk . Furthermore, define

P
(ψ)
λ (β) =

∑
σ∈Sk

(−1)l(σ )p
v

(ψ)
σ

(
σ(λ + δ) − (

ψ(β) + δ
))

. (32)

Lemma 4.3. P
(ψ)
λ is a polynomial function on the interior of the regions ofA(ψ)

λ and
coincides with the multiplicity function there.

Proof. For fixed λ, the type of points along a path between twoβ ’s in the interior of
the same region ofA(ψ)

λ will remain the same by definition of the Kostant arrangem
(because noσ(λ + δ) − (ψ(β) + δ) crosses a wall along that path).�

The reason why Lemma 4.3 is restricted to the interior of the regions is that
polynomials for adjacent regions of the chambercomplex for the Kostant partition functio
have to coincide on the intersection of their closures, there is a discontinuous jump
value of the Kostant partition function (asa piecewise polynomial function) when going
from a region on the boundary of the complex to region 0 (outside the complex).

Remark 4.4. Given a rational polytopeQ of dimensiond in Rn and t ∈ N, denote by
tQ the polytope obtained by scalingQ by a factor of t . Ehrhart [8] showed that th
function t �→ |tQ ∩ Z

n|, counting the number of integer points intQ as a function oft ,
is a quasipolynomial of degreed , and a polynomial of degreed if Q is integral. This
function is called theEhrhart (quasi)polynomialof the polytopeQ. Furthermore, the
leading coefficient of the Ehrhart quasipolynomial is thed-dimensional volume ofQ. It
can be shown that for every fixedλ andβ , and anyψ , the functiont �→ Type(ψ)(tλ, tβ) in
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the nonnegative integer variablet eventually stabilizes ast grows (in a way that depend
only onk and not onλ andβ). This can be used to give a proof that the Ehrhart funct
of the Gelfand–Tsetlin polytopes GTλ,β are polynomial (we omit the proof since we pro
something stronger in Corollary 5.2 below).

In the definition of the Kostant arrangements above, a lot of the hyperplanes a
redundant. We simplify here the description of these arrangements. Since everything occ
on the subspacex1+· · ·+xk = 0 of Rk , so that〈σ(λ+ δ)− (ψ(β)+ δ), (1,1, . . . ,1)〉 = 0,
we can regard the normals to the hyperplanes up to adding multiples of(1,1, . . . ,1)

without changing the Kostant arrangements. So we can useω̃j = ωj + j
k
(1,1, . . . ,1):

ω̃j = 1

k
(k, k, . . . , k︸ ︷︷ ︸

j times

,0,0, . . . ,0︸ ︷︷ ︸
k−j times

) = (1,1, . . . ,1︸ ︷︷ ︸
j times

,0,0, . . . ,0︸ ︷︷ ︸
k−j times

) = e1 + · · · + ej ,

which is more convenient thanωj for what follows. The hyperplanes ofA(ψ)
λ then have

the form

0= 〈
σ(λ + δ) − (ψ(β) + δ), θ

(
ω̃j

)〉
,

0 = 〈
σ(λ) − ψ(β) + σ(δ) − δ, eθ(1) + · · · + eθ(j)

〉
,

0 = 〈
(λσ−1(i) − βψ−1(i) + δσ−1(i) − δi)i=1,...,k, eθ(1) + · · · + eθ(j)

〉
,

0=
j∑

i=1

(λσ−1(θ(i)) − βψ−1(θ(i)) + δσ−1(θ(i)) − δθ(i)),

βψ−1(θ(1)) + · · · + βψ−1(θ(j)) = λσ−1(θ(1)) + · · · + λσ−1(θ(j)) +
j∑

i=1

(δσ−1(θ(i)) − δθ(i)).

(33)

At this point we can get rid of the permutations since only the subsetsθ({1, . . . , j }),
ψ−1θ({1, . . . , j }) andσ−1θ({1, . . . , j }) are important and not the order of their elemen
They can be any subsets sinceψ−1θ , σ−1θ and θ can be any three permutations
Sk. Because theβi , the λi and theδi sum up to zero, replacing these subsets by t
complements gives the same hyperplane. This proves the following proposition.

Proposition 4.5. The hyperplanes of the Kostant arrangements are defined by the equ

βu1 + · · · + βuj = λv1 + · · · + λvj +
j∑

i=1

(δvi − δwi ), (34)

whereU = {u1, . . . , uj }, V = {v1, . . . , vj } andW = {w1, . . . ,wj } range over allj -elem-
ent subsets of{1, . . . , k} andj � �k/2�.
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We will call the correction term involving onlyδ in a hyperplane given as in (34), th
δ-shift:

shift(V ,W) =
j∑

i=1

(δvi − δwi ). (35)

Remark 4.6. For fixedU , we get a series of parallel hyperplanes, and we can deter
which are the outer ones because they correspond to maximal and minimal sums ofλqi .
Since theλ1 � λ2 � · · · � λk , they are

βu1 + · · · + βuj = λ1 + · · · + λj + shift
({1, . . . , j },W)

,

βu1 + · · · + βuj = λk−j+1 + · · · + λk + shift
({k − j + 1, . . . , k},W)

.
(36)

Note that since the coordinates ofδ are decreasing, shift({1, . . . , j },W) � 0 and
shift({k − j + 1, . . . , k},W) � 0 for all W .

We conclude this section by relating the domains given by the Kostant arrange
and those given by Theorem 3.2, by showing that the hyperplanes supporting the fa
the domains are precisely the hyperplanes of the Kostant arrangements without theδ-shift
factors.

Proposition 4.7. The supporting hyperplanes of the facets of the top-dimensional dom
of the permutahedron for genericλ are the hyperplanes

βu1 + · · · + βuj = λv1 + · · · + λvj , (37)

for 1 � j � �k/2� and U = {u1, . . . , uj }, V = {v1, . . . , vj } ranging over all pairs of
j -element subsets of{1, . . . , k}.

Proof. Theorem 3.1 gives the walls supporting the facets as the convex hulls ofW · σ(λ),
whereσ(λ) is a point of the Weyl orbit ofλ, andW is a parabolic subgroup of the We
group. ForSk, those subgroups permute two complementary sets of indices indepen
If U is one of those sets of indices, with|U | = j , andλv1, . . . , λvj the coordinates ofσ(λ)

in those positions, then the hyperplane supportingW · σ(λ) is

βu1 + · · · + βuj = λv1 + · · · + λvj . (38)

Had we chosen the complement ofU instead with the remainingλi ’s, we would have
gotten the same hyperplane in the subspacex1 + · · · + xk = 0 of Rk since theλi ’s and the
βi ’s sum up to zero. �

We can obtain the following corollary without using the full description of the dom
of the permutahedron obtained by symplectic geometry means in Theorem 3.1.
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Corollary 4.8. The hyperplanes supporting the facets of the permutahedron for a ge
λ are

βu1 + · · · + βuj = λ1 + · · · + λj ,

βu1 + · · · + βuj = λk−j+1 + · · · + λk

(39)

for 1 � j � �k/2� andU = {u1, . . . , uj } ranging over allj -element subsets of{1, . . . , k}.

Proof. We remark that the “shell” of the weight diagram is just a permutahedron, w
facets can easily be described in terms ofpermutations (see [34, p. 18]). ForU ⊆ {1, . . . , k},
construct ak-vector by putting the first|U | λi ’s in the positions indexed byU and filling the
other positions with the remaining elements. Then act by the subgroup ofSk that permutes
the elements in positionsU and{1, . . . , k} \ U independently to get a facet as the conv
hull of the points of this orbit. The affine span of this facet is the hyperplane

βu1 + · · · + βuj = λ1 + · · · + λj .

By choosing the last|U | λi ’s instead, we get the hyperplane supporting the oppo
parallel facet. These are the outer hyperplanes from (36) without the shifts. Remark 4
also implies these outer hyperplanes actually lie outside the permutahedron.�
Remark 4.9. The Weyl orbits ofωj and ωk−j (1 � j � k − 1) for slkC (type Ak−1)
determine the same set of directions, sinceωk−j is −ωj with the coordinates in revers
order. So the Weyl orbits ofω1, . . . ,ω�k/2� already determine all the possible normals
facets of the permutahedron (and the hyperplanes of the Kostant arrangement).

5. Polynomiality in the chamber complex

Theorem 2.1 allowed us to write the multiplicity function as a partition funct
which is therefore quasipolynomial over the convex polyhedral cones of the cha
complexC(k). On the other hand, for each dominant weightλ, Theorem 3.2 shows tha
the partition of the permutahedron from Theorem 3.1 gives domains over whic
multiplicity function is polynomial inβ . We show here that the quasipolynomials attac
to the complexC(k) are actually polynomials, so that the multiplicity function is polynom
in bothλ andβ over the cones of the complex.

The union of the cones of the complexC(k) is the cone

T (k) =
⋃

λ∈C0

{λ} × conv(Sk · λ), (40)

whereC0 is the fundamental Weyl chamber.
We can lift the partition of the permutahedron from Theorem 3.1 to(λ,β)-space by

lifting the wall
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conv
(
W · σ(λ)

)
to

⋃
λ∈C0

{λ} × conv
(
W · σ(λ)

)
.

This gives a partitionT (k) of the coneT (k) into convex polyhedral cones, and Theorem
implies that the multiplicity function is quasipolynomial over the cones ofT (k). We recover
the domains from Theorem 3.1 by intersectingT (k) with L(λ) from Eq. (19). Our reaso
for introductingT (k) rather that working with the complexC(k) is that Proposition 4.7 let
us describe the hyperplanes supporting the facets of the cones ofT (k) easily. Indeed, if

βu1 + · · · + βuj = λv1 + · · · + λvj

supports a wall conv(W · σ(λ)) for fixed λ, then the wall
⋃

λ∈C0
{λ} × conv(W · σ(λ)) is

supported by the hyperplane

βu1 + · · · + βuj = λv1 + · · · + λvj

in (λ,β)-space, where we now think ofλ as variable, just likeβ .
The last tool we need is a lifted version of the Kostant arrangements. Recall from

that the Kostant arrangementA(ψ)
λ has the hyperplanes

βψ−1(θ(1)) + · · · + βψ−1(θ(j)) = λσ−1(θ(1)) + · · · + λσ−1(θ(j)) +
j∑

i=1

(δσ−1(θ(i)) − δθ(i)),

asθ ranges overSk . We will denote byA(ψ) the arrangement with hyperplanes

βψ−1(θ(1)) + · · · + βψ−1(θ(j)) = λσ−1(θ(1)) + · · · + λσ−1(θ(j)) +
j∑

i=1

(δσ−1(θ(i)) − δθ(i)),

where we now think ofλ as variable, andθ ranges overSk as before. The definition o
P

(ψ)
λ (Eq. (32)) and Lemma 4.3 generalize to give us a piecewise polynomial functionP (ψ)

in λ andβ that expresses the multiplicity function as a polynomial on the interior of th
regions of the arrangementA(ψ).

Theorem 5.1. The quasipolynomials determining the multiplicity function in the cones o
T (k) andC(k) are polynomials of degree

(
k−1

2

)
in theβi , with coefficients of degree

(
k−1

2

)
in theλj .
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Proof. We will show that for each coneC of T (k) we can find a regionR of the Kostant
arrangementA(ψ) (for any ψ), such thatC ∩ R contains an arbitrarily large ball. The
P (ψ) and the quasipolynomial inC agree on the points(λ,β) in that ball for which
(λ,β) ∈ ΛW × ΛW and λ − β ∈ ΛR (the points corresponding to allowable pairs o
dominant weight and a weight of its irreducible representation). The quasipolynomia
therefore be polynomial on those points. The degree bounds follow from Remark 1.

By the remarks preceding this theorem, the hyperplanes supporting the facets
cones ofT (k) are exactly the same as the hyperplanes of the Kostant arrangemenA(ψ)

with the shifts removed. If we deformA(ψ) continuously to make the shifts zero (b
multiplying them byt and lettingt going from 1 to 0, for example), the final deform
arrangement is a partition ofT (k) that refinesT (k). Let R be any region ofA(ψ) whose
deformed final version is contained inC. Consider a ball of radiusr inside the deformed
image ofR, and suppose it is centered at the pointx. If s is the maximal amount by whic
the hyperplanes of the Kostant arrangement are shifted, thenR contains the ball of radiu
r − s centered atx, and so doesC ∩ R. SinceC is a cone, we can maker arbitrary large
and the result follows sinces is bounded.

We get the same result for the complexC(k) by passing to its common refineme
with T (k). �

Recall from Section 3 that the weight multiplicity function and the Duisterma
Heckman function have the same leading term. In particular, the degree of the multi
function is at most the upper bound on the degree of the Duistermaat–Heckman fu
For a torusT acting on a symplectic manifoldM, the latter is known to be(dimM)/2 −
dimT . In our case,M is the coadjoint orbitOλ and dimT = k − 1 sinceT is the set of
k × k traceless diagonal Hermitian matrices. The dimension ofOλ is k2 − k = k(k − 1) for
genericλ, but for nongenericλ, we can get more precise bounds on the degrees. Sinc
coordinates ofλ are decreasing, it has the form

(ν1, . . . , ν1︸ ︷︷ ︸
k1 times

, ν2, . . . , ν2︸ ︷︷ ︸
k2 times

, . . . , νl, . . . , νl︸ ︷︷ ︸
kl times

)

where ν1 > ν2 > · · · > νl and thekj sum up tok. In this case, one can show th
dimOλ = k2 − ∑

k2
j , so that the weight multiplicity function for thatλ is piecewise

polynomial of degree at most

k2 − ∑
k2
j

2
− k + 1. (41)

For sl4C, for example, we get at most cubic polynomials for genericλ, at most quadratic
polynomials forλ with exactly two equal coordinates, at most linear polynomials forλ with
two pairs of equal coordinates (λ of the form(ν, ν,−ν,−ν)) and constant polynomials fo
λ with three equal coordinates (λ of the form(3ν,−ν,−ν,−ν) or (ν, ν, ν,−3ν)).

We can also deduce from Theorems 2.1 and 5.1 that the multiplicity function for
A exhibits a scaling property in the following sense.



S. Billey et al. / Journal of Algebra 278 (2004) 251–293 275

t
s are

Re-
h

stant
ify
s and
rtition
x
close

ce the
y
stant
he

arallel
ains of
lap
ed
ave to
p: the
licity

d
re. The
Corollary 5.2. LetΥ be the set{(λ,β) ∈ Λ2
W : λ − β ∈ ΛR}. For any generic(λ,β) ∈ Υ ,

we can find a neighborhoodU of that point over which the function

(λ,β, t) ∈ (U ∩ Υ ) × N �→ mtλ(tβ) (42)

is polynomial of degree at most2
(
k−1

2

)
in t and

(
k−1

2

)
in theλ andβ coordinates.

Proof. Let (λ,β) ∈ Υ . For U sufficiently small, the points{(tλ, tβ): t ∈ N} lie in the
same cone of the chamber complexC(k), and fort ∈ N, tλ andtβ are points on the weigh
lattice with their difference on the root lattice. Hence the corresponding multiplicitie
obtained by evaluating the same polynomial at those points.�
Remark 5.3. This corollary implies in particular that the Ehrhart functions (see
mark 4.4) of the Gelfand–Tsetlin polytopes GTλ,β are always polynomial, even thoug
the polytopes are not always integral (see [24]).

6. Factorizations of weight polynomials

In this section we use the explicit relation between the hyperplanes of the Ko
arrangements and the supporting hyperplanes of the partitioned permutahedron to ident
certain factors in the weight polynomials. As mentioned in the introduction, Szene
Vergne [31] have recently observed this factorization phenomenon for general pa
functions. The quasipolynomialsassociated to the partition function’s chamber comple
exhibit a certain number of linear factors that vanish on hyperplanes parallel and
to those supporting the walls of the complex. In our case it is unclear how to dedu
form of the walls of the complexC(k) from the complex of the partition function given b
matrix Ek in Section 2. We are however able to deduce similar results from the Ko
arrangements and the description of the hyperplanes supporting the walls partitioning t
permutahedron from Section 4.

6.1. On the boundary of the permutahedron

We have seen in Proposition 4.8 that each facet of the permutahedron is p
and close to a hyperplane of a Kostant arrangement. This means that the dom
polynomiality of the weight diagram that are onthe boundary of the permutahedron over
with regions of the Kostant arrangement, but can’t coincidebecause of the shifts caus
by δ. We can use this to our advantage to show that those weight polynomials h
factor somewhat. The reason is that two polynomials give the weights in the overla
one attached to a cone of the chamber complex obtained from writing the multip
function as a single partition function, and one,P (ψ), coming from Kostant’s multiplicity
formula. Because the overlap isn’t perfect, the polynomial from Kostant’s formula is vali
on a region that goes outside the weight diagram and must therefore vanish the
purpose of this section is to make precise this phenomenon and quantify it.
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Definition 6.1. For fixedλ, consider the hyperplane

H : βu1 + · · · + βuj = λv1 + · · · + λvj ,

where 1� j � �k/2� andU = {u1, . . . , uj }, V = {v1, . . . , vj } are j -element subsets o
{1, . . . , k}. We will call the polynomial

γU,V (λ) = βu1 + · · · + βuj − λv1 − · · · − λvj ∈ Z[β] (43)

thedefining equationof H . For variableλ, we also define

γU,V = βu1 + · · · + βuj − λv1 − · · · − λvj ∈ Z[λ,β]. (44)

Theorem 6.2. LetR be a domain of polynomiality for the weight diagram of the irreduci
representation ofslkC with highest weightλ, andpR be its weight polynomial. Suppo
that R has a facet lying on the boundary of the permutahedron forλ that hasθ(ωj ) as
its normal vector, for someθ ∈ Sk . If γ = γ (λ) is the defining equation of the hyperpla
supporting that facet, thenpR is divisible by thej (k − j) − 1 linear factorsγ + 1, γ + 2,
. . . , γ + j (k − j) − 1, or γ − 1, γ − 2, . . . , γ − j (k − j) + 1.

Observe that this is invariant under replacingj by k − j , which is a consequenc
of the remark in Remark 4.9. By that remark, we can therefore restrict ourselves
1 � j � �k/2�.

Proof. Suppose the hyperplane supporting the facetF of R on the boundary of the
permutahedron has normalθ(ωj ). By Remark 4.6 and Proposition 4.8, this hyperpla
is either

βθ(1) + · · · + βθ(j) = λ1 + · · · + λj or (45)

βθ(1) + · · · + βθ(j) = λk−j+1 + · · · + λk. (46)

Suppose it’s the first one (the argument is the same for the second one).
Proposition 4.5, we know that in the Kostant arrangements, we have the hyperplane

βθ(1) + · · · + βθ(j) = λ1 + · · · + λj + shift
({1, . . . , j },W)

, (47)

for W ranging overj -element subsets of{1, . . . , k}. We want to identify a regionR′ of one
of the Kostant arrangements that overlaps withR and extends beyond the boundary of
weight diagram as far as possible. Note that although the exterior walls ofR andR′ have
to be parallel, the interior walls do not.
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First we find a hyperplane of one of the Kostant arrangements parallel toF and
outside the permutahedron. Recall from Remark 4.6 that hyperplanes of the form (4
have nonnegativeδ-shifts. For positiveδ-shift, the corresponding hyperplane lies outs
the permutahedron. In fact, we would like to maximize

shift
({1, . . . , j },W) =

j∑
i=1

δi −
j∑

i=1

δwi (48)

because this will determine how muchpR factorizes. The first sum is as large as poss
because it is the sum of the firstj coordinates of

δ = 1

2

(
k − 1, k − 3, . . . ,−(k − 3),−(k − 1)

)
.

Sincej � �k/2�, we can pickW disjoint from{1, . . . , j }. PickingW = {k − j + 1, . . . , k}
means the second sum consists of the last (and smallest) entries ofδ. Thus (k − 1)/2,
(k − 3)/2, . . . , (k − 2j + 1)/2 appear in the first sum and their opposites in the sec
The maximal shift is then

shift(max)(j) = 2

(
k − 1

2
+ k − 3

2
+ · · · + k − 2j + 1

2

)
= j (k − j). (49)

Suppose thatH(λ) is the hyperplane with this maximal shift (at distancej (k − j) outside
the permutahedron and parallel toF ) and that it belongs to the Kostant arrangementA(ψ)

λ .

The second step is to find a regionR′ of A(ψ)
λ with a facet onH(λ) that overlaps withR.

If we replaceλ by a multiplemλ of itself, the partition of the permutahedron simp
scales up by a factor ofm, and the polynomials attached to the regions, as polynom
in λ andβ , remain the same (because thecells of the chamber complexC(k) are cones)
The hyperplanes of the Kostant arrangements almost scale, except for theδ-shift factor.
Those shifts preserve the distance between the hyperplanes and the ones suppo
facets of the permutahedron, even as the regions grow since the separation between para
hyperplanes ofA(ψ)

λ increases. Hence for a large enough multiple ofλ, one of the regions

R′ of A(ψ)
mλ with a facet onH(mλ) will overlap with mR. From now on we’ll assume tha

λ has been replaced by a suitably large multiple of itself.
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We are now in the setup of the above picture. The polynomialspR in R andP (ψ) on
R′ both give the multiplicities in the interior of their respective regions, and hence the
equal provided thatR ∩ R′ contains sufficiently many points. We can assume that we
scaledλ sufficiently above so that this is the case. SinceP (ψ) has to vanish outside of th
permutahedron, it will vanish on the intersection ofR′ with the hyperplanes

βθ(1) + · · · + βθ(j) = λ1 + · · · + λj + 1,

...

βθ(1) + · · · + βθ(j) = λ1 + · · · + λj + shift(max)(j) − 1.

If the intersection ofR′ with these hyperplanes contains sufficiently many points (ag
we can scaleλ so that this is the case),P (ψ) will have the defining equations of thos
hyperplanes as factors, and hence so willpR .

Here we have assumedF is defined by (45) andγ = γU,V (λ) for U = θ({1, . . . , j }),
V = {1, . . . , j }. If F is defined by (46), we get the sameU butV = {k − j + 1, . . . , k}, and
the defining equationsγ, γ − 1, . . . , γ − shift(max)(j) + 1. �

We can lift this result to the weight polynomials associated to the cones o
chamber complexC(k). This will allow us to think of the linear factors dividing the weig
polynomials as polynomials both inλ andβ .

Corollary 6.3. Let τ be the cone ofC(k) whose intersection withL(λ) gives domainR in
the previous theorem, andpτ its associated weight polynomial. IfγU,V (λ) + c dividespR ,
thenγU,V + c dividespτ .

We will call these families of linear factors,parallel linear factors. This shows tha
the smallest number of parallel linear factors is obtained when considering facets of
permutahedron normal to a permutation ofω1 or ωk−1. In this case, we getk − 2 factors in
the weight polynomials of the boundary regions on those facets. Forj = �k/2�, we get a
maximum of�k/2�(k−�k/2�)−1∼ k2/4 parallel linear factors. Since thepR have degree
at most

(
k−1

2

) ∼ k2/2 in β (regardingλ as a parameter), we get linear factors accoun
for about half the degree of the weight polynomials for those facets.

The fundamental weightωj = e1 + e2 + · · · + ej − j
k
(1,1, . . . ,1) has an orbit of size(

k
j

)
, and thus there are that many facets having a permutation ofωj as an outer normal (th

opposite parallel facets have the permutations ofωk−j as normals). So the permutahedr
for genericλ = (λ1, . . . , λk) has

∑k−1
j=1

(
k
j

) = 2k − 2 facets, most of which have norma
corresponding to central values ofj (i.e., close to�k/2�). The following table gives the
minimum numbers of parallel linear factors for different values ofk andj . In parenthese
are the numbers of facets having a permutation ofωj or ωk−j as a normal. For example
in sl8C, the maximal degree of the weight polynomials is 21 and we expect tha
polynomials of regions with a facet on any of 112of the 254 facets of the permutahedra
have 14 parallel linear factors.
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#(facets) max deg(pR) j = 1 j = 2 j = 3 j = 4

sl3C (A2) 6 1 1 (6)

sl4C (A3) 14 3 2 (8) 3 (6)

sl5C (A4) 30 6 3(10) 5 (20)
sl6C (A5) 62 10 4(12) 7 (30) 8 (20)
sl7C (A6) 126 15 5(14) 9 (42) 11 (70)
sl8C (A7) 254 21 6(16) 11 (56) 14 (112) 15 (70)
sl9C (A8) 510 28 7(18) 13 (72) 17 (168) 19 (252)

Theorem 6.2 only depends on the fact that using our description in the pre
section of the walls of the chamber complex for the Kostant partition function
the combinatorial description of the permutahedron (Lemma 4.1), we can argu
there will always be hyperplanes of Kostant arrangements parallel and close
facets of the permutahedron. In order to extend the factorization phenomenon insi
the permutahedron, we will need to use the complete description of the doma
polynomiality for the weight multiplicity function, obtained by symplectic geometry mean
in Theorem 3.1.

6.2. Inside the permutahedron

We already discussed at the end of the previous section that the hyperplanes sup
the walls partitioning the permutahedron are precisely the hyperplanes of the Kosta
arrangements without the shift factors. We will take advantage here of overlaps be
the improved domains of Section 3 and regions of the Kostant arrangements to sh
that the weight polynomials themselves factor, but rather that as we jump betwee
adjacent domains, the difference in the corresponding weight polynomials exhibits parallel
linear factors. Given a facet between two adjacent domains of the permutahedron, we w
see that we are able to find two hyperplanes of Kostant arrangements parallel to it
maximal distance on either side of it, and deduce from this a number of parallel
factors of the polynomial jump.

Definition 6.4. We will say that two domains areadjacentif they have the same dimensio
and a facet of one is a subset of a facet of the other, or equivalently if they interse
nonempty polytope of dimension one less.

Theorem 6.5. LetP1 andP2 be two adjacent full dimensional domains of polynomiality o
the permutahedron for a generic dominant weightλ of slkC, and suppose that the norm
to their touching facets is in the directionσ(ωj ) for someσ ∈ Sk . If p1 andp2 are the
weight polynomials ofP1 and P2, andγ is the defining equation of the wall separati
them, then the jumpp1 − p2 either vanishes or has thej (k − j) − 1 linear factors

(
γ − s− + 1

)
,
(
γ − s− + 2

)
, . . . , γ , . . . ,

(
γ + s+ − 2

)
,
(
γ + s+ − 1

)
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for some integerss−, s+ � 0 satisfying

s− + s+ = j (k − j). (50)

Proof. Suppose the touching facets ofP1 andP2 lie on the hyperplane

βu1 + · · · + βuj = λv1 + · · · + λvj .

Then among the Kostant arrangement hyperplanes

βu1 + · · · + βuj = λv1 + · · · + λvj + shift(V ,W), W ⊆ {1, . . . , k}, |W | = j,

we can find a pair for which theδ-shift is minimal and maximal by picking appropria
subsetsW . Clearly, the minimal shift−s− will be nonpositive, and the maximal shifts+,
nonnegative. In fact,

s+ = max
W

(
j∑

i=1

δvi −
j∑

i=1

δwi

)
=

j∑
i=1

δvi − min
W

j∑
i=1

δwi ,

s− = −min
W

(
j∑

i=1

δvi −
j∑

i=1

δwi

)
= max

W

j∑
i=1

δwi −
j∑

i=1

δvi

so that

s+ + s− = max
W

j∑
i=1

δwi − min
W

j∑
i=1

δwi = 2 max
W

j∑
i=1

δwi = j (k − j) (51)

sinceδ = −δreverse. For k odd, theδi are integral, and hence so ares− and s+. When
k is even, theδi are half-integers with odd numerators. Since we are adding/subtra
an even number of them (2j ) to compute the shifts, we again get thats− and s+ are
integers.

We can find regionsQ1 andQ2, R1 andR2 of Kostant arrangements as in the followi
diagram. We will think of these regions asopen convex polytopes because in Lemma
the polynomials giving the multiplicities on the regions of the Kostant arrangements ar
only valid in the interior of the regions.
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We will let the corresponding polynomials, as given byP (ψ) in Eq. (32), beq1 andq2,
r1 and r2 respectively. Since we can assume that we have scaledλ sufficiently (as in
Theorem 6.2), we have thatq1 = p1 = r1 and q2 = p2 = r2, sinceQ1 ∩ P1 ∩ R1 and
Q2 ∩ P2 ∩ R2 are large. Furthermore,p1 andq2 agree onP1 ∩ Q2 and similarly,p2 and
r1 agree onP2 ∩ R1. SinceP1 ∩ Q2 andP2 ∩ R1 contain enough lattice points on th
bounded hyperplanes (dotted lines in the diagram), the differencesp1 − q2 andp2 − r1
have to vanish on those hyperplanes. Hence

p1 − q2 = (
γ − s− + 1

)(
γ − s− + 2

) · · · (γ − 1) · h1,

p2 − r1 = (γ + 1)(γ + 2) · · ·(γ + s+ − 1
) · h2 (52)

for some polynomialsh1 andh2, unlessp1 = q2 or p2 = r1, in which casep1 = p2, since
p1 = r1 andp2 = q2. If we assume thatp1 �= p2, we have that

p1 − p2 = (
γ − s− + 1

)(
γ −
s + 2

) · · · (γ − 1) · h1,

p2 − p1 = (γ + 1)(γ + 2) · · ·(γ + s+ − 1
) · h2 (53)

and sincep1 andp2 have to agree on the lattice points on the wall betweenP1 andP2,
their difference is also divisible byγ . Hence we get

p1 − p2 = (
γ − s−)(

γ − s− + 1
) · · ·γ · · · (γ + s+ − 1

)(
γ + s+) · h3 (54)

for someh3. �
Remark 6.6. As in Corollary 6.3, we can lift this result to the weight polynomialspτ

associated to the cones of the chamber complexC(k) and regard the parallel linear facto
as polynomials in bothλ andβ .
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7. The chamber complexes for sl3C (A2) and sl4C (A3)

In this section we explicitly compute the chamber complexes fork = 3 andk = 4.
For k = 4, we find that the chamber complex does not optimally partition the dom
of polynomiality for the multiplicity function. InTheorem 7.4, we prove that the optim
glued complex does agree with Theorem 3.2 fork = 4.

7.1. The chamber complex forsl3C (A2)

Using the procedure described in Section 2 to write down the multiplicity function
single partition function in the casek = 3 (A2) gives that

mλ(β) = φE3

(
B3

(
λ

β

))
(55)

with

E3 =


1 1 0 0 0 0
0 −1 1 0 0 0
0 1 0 1 0 0
0 −1 0 0 1 0
0 −1 0 0 0 1

 and B3

(
λ

β

)
=


λ1 − λ2

2λ2 − β1 − β2
β1 + β2 + λ1

λ2 − β1
λ2 − β2

 . (56)

We can compute the chamber complex associated toE3 and intersect it with the space

B̃ =
{
B3

(
λ

β

)
: λ ∈ R

3, β ∈ R
3, λ1 + λ2 + λ3 = 0, β1 + β2 + β3 = 0

}
. (57)

In that space we can apply

B−1
3 = 1

9


6 2 3 1 1

−3 2 3 1 1
−3 −1 3 −5 4
−3 −1 3 4 −5

 (58)

to rectify the cones of that complex to obtainC(3). The full dimensional cones ofC(3) are
given by

τ3 = pos(b, a1, c2, c3) τ6 = pos(b, a1, a2, c3)

τ1 = pos(b, a1, a2, a3) τ2 = pos(b, c1, c2, c3) τ4 = pos(b, a2, c1, c3) τ7 = pos(b, a1, a3, c2)

τ5 = pos(b, a3, c1, c2) τ8 = pos(b, a2, a3, c1)

(59)

where the rays are

a1 = [2,−1,−1,2,−1,−1], c1 = [1,1,−2,−2,1,1],
a2 = [2,−1,−1,−1,2,−1], b = [1,0,−1,0,0,0], c2 = [1,1,−2,1,−2,1],
a = [2,−1,−1,−1,−1,2], c = [1,1,−2,1,1,−2].

(60)

3 3
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The cones above are grouped into orbits under the action of the symmetric groupS3 on
theβ-coordinates. In general the set of cones ofC(k) won’t be closed under the action
Sk on theβ-coordinates, even though the multiplicities under theSk should be invariant.

We can get the polynomialpi corresponding toτi easily through interpolation, usin
for example the Kostant partition function forA2 which has the simple form

K(a,−a + b,−b) =
{

min{a, b} + 1 if a, b ∈ N,

0 otherwise.

p3 = 1+ λ1 − β1 p6 = 1+ λ1 + λ2 + β3
p1 = 1+ λ2 − λ3 p2 = 1+ λ1 − λ2 p4 = 1+ λ1 − β2 p7 = 1+ λ1 + λ2 + β2

p5 = 1+ λ1 − β3 p8 = 1+ λ1 + λ2 + β1

Note that even though they highlight the symmetries in theβi ’s, these polynomials
are a little ambiguous since they are defined up to the relationsλ1 + λ2 + λ3 = 0 and
β1 + β2 +β3 = 0, which allow for some substitutions to be made. To avoid any ambig
we can rewrite them in terms of the fundamental weight basisω1 = 1

3(2,−1,−1) and
ω2 = 1

3(1,1,−2). Then ifλ = l1ω1 + l2ω2 andβ = b1ω1 + b2ω2, the polynomials take th
form

p3 = 1+ 1
3(2l1 + l2 − 2b1 − b2) p6 = 1+ 1

3(l1 + 2l2 − b1 − 2b2)

p1 = 1+ l2 p2 = 1+ l1 p4 = 1+ 1
3(2l1 + l2 + b1 − b2) p7 = 1+ 1

3(l1 + 2l2 − b1 + b2)

p5 = 1+ 1
3(2l1 + l2 + b1 + 2b2) p8 = 1+ 1

3(l1 + 2l2 + 2b1 + b2)

The domains of polynomiality ofa weight diagram for a givenλ will be the (possibly
empty) polytopesτi ∩L(λ) for i = 1,2, . . . ,8, so there are at most eight of them, althou
in practice at most seven appear at a time. We could obtain a symbolic descript
the domains of polynomiality for the weight diagram of anyλ of A2 from the chambe
complex. Whenλ is one of the fundamental weights, we get a triangle with cons
multiplicities inside; otherwise we get a hexagon with a (possibly empty) central tria
in which the multiplicities are constant and decrease linearly outside. Figure 4 show
happens when we move from one fundamental weight to the other. The picture forA2 is
already well-known (see, for example, [5,18]).

Corollary 2.6 explains why the second and third diagrams, as well as the fifth and
of Fig. 4 are variations of each other, and why the polynomials attached to each of t
seven regions are the same for each of these pairs of diagrams. ForA2, the conesτk project
underpΛ to the three cones

Fig. 4. Weight diagrams and their domains of polynomiality forA2.



284 S. Billey et al. / Journal of Algebra 278 (2004) 251–293

ile

es
C0 = pos
(
(2,−1,−1), (1,1,−2)

) = pos(ω1,ω2),

C1 = pos
(
(2,−1,−1), (1,0,−1)

) = pos(ω1,ω1 + ω2),

C2 = pos
(
(1,0,−1), (1,1,−2)

) = pos(ω1 + ω2,ω2).

We can see thatC1 and C2 partition the fundamental Weyl chamberC0 of A2, and
henceC(2)

Λ consists ofC1, C2 and all their faces. Therefore forA2 there are only two
generic types ofλ’s: λ’s with λ2 < 0 (diagrams 2 and 3 on Fig. 4) andλ’s with λ2 > 0
(diagrams 5 and 6 on Fig. 4). The caseλ2 = 0 corresponds to the regular hexagon, wh
the degenerate casesλ1 = λ2 andλ2 = λ3 correspond to the triangles. If we expressλ in
terms of the fundamental weightsλ = l1ω1 + l2ω2, these correspond tol1 < l2, l1 > l2
andl1 = l2 respectively for the hexagons, andl1 = 0 andl2 = 0 for the degenerate cas
(triangles).

7.2. The chamber complex forsl4C (A3)

We can write

mλ(β) = φE4

(
B4

(
λ

β

))
with

E4 =



0 1 1 1 0 0 0 0 0 0 0 0
1 −1 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0
0 −1 −1 0 0 0 0 1 0 0 0 0

−1 0 −2 0 0 0 0 0 1 0 0 0
−1 0 −1 0 0 0 0 0 0 1 0 0
−1 0 −1 0 0 0 0 0 0 0 1 0
1 −1 0 0 0 0 0 0 0 0 0 1


and

B4

(
λ

β

)
=



λ1 + β1 + β2 + β3
λ2 − λ3
λ1 − λ2
λ2 − λ3

λ2 + 2λ3 − β1 − β2 − β3
2λ3 − β1 − β2

λ3 − β1
λ3 − β2
λ2 − β3


.

Remark 7.1. E4 is not unimodular. We do not know of a unimodular matrix forsl4C that
would make the multiplicity function into a single partition function.
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ForA3 we must use the computer to do most of the computations. A symbolic calc
like Maple or Mathematica is especially useful. Here we used Maple (versions 7 and 8) a
the packageconvex by Matthias Franz [9].

The setB(4) of bases forE4 has 146 elements, so there are 146 base conesτσ for
σ ∈ B(4). These are 9-dimensional cones, however they collapse to 132 6-dimen
cones when intersected with

B̃ =
{
B4

(
λ

β

)
: λ ∈ R

4, β ∈ R
4, λ1 + · · · + λ4 = 0, β1 + · · · + β4 = 0

}
.

The full chamber complex is the complex of all intersections of the 146 cones inR9,
and it has 6472 full-dimensional cones. The chamber complex inB̃-space has 1202 full
dimensional (6-dimensional) conesτ̃k , which we can rectify to get the chamber comp
C(4) in (λ,β)-space with conesτk, k = 1, . . . ,1202. However, the 6-dimensional chamb
complex thus obtained is not closed under the action of the symmetric groupS4 on the
β-coordinates.

Despite the fact that the chamber complex seems to lack the symmetry property inβ , we
will see, as we find the polynomials attached to the domains of polynomiality, that
is a way to regain it. We can compute the polynomial associated to each of these
cones by interpolation, for example using the fact that De Loera and Sturmfels com
the polynomials for the Kostant partition function forA3 in [25]. These 1202 polynomial
are not all distinct.

Observation 7.2. If we group together the top-dimensional cones from{τk: k =
1, . . . ,1202} with a particular polynomial, their union is always a convex polyhedral c
again. Grouping cones this way yields a glued chamber complexG in (λ,β)-space with
612conesGk , k = 1, . . . ,612. These cones form64 orbits under the action ofS4 on the
β-coordinates.

Proof. Here is a description of the algorithm used to make this observation. Suppos
{τi1, τi2, . . . , τiN } consists of all the cones with a particular given associated polyno
and letτ be the convex polyhedral cone spanned by the union of all their rays. We w
proveτ = ⋃N

j=1 τij .
We can find an affine half-space whose intersection with each of these cones

empty and bounded, so that we can work with truncated cones. The half-spaceλ1 � 1
works. The union of{τi1, . . . , τiN } will equal τ if and only if the union of their truncation
gives the truncation ofτ . The truncated cones are polytopes, and we can compute
volume. We can check that the union of the truncations ofτi1, . . . , τiN is the truncation of
τ just by checking that the volumes match. We know theτij have disjoint interiors becaus
they are defined as the common refinement of base cones, hence the volume of the union
all these truncated cones is simply the sum of their volumes. If the computations ar
symbolically (in Maple), there is no danger that truncated cones with very small volum
could create round-off errors.

The volumes are compared symbolically for every family of cones corresponding
same polynomial. We glue together all the cones with the same polynomial, and o
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that we still get a complex of convex polyhedral cones. This glued complex is inva
under the action ofS4 on theβ-coordinates. �

We now have two 6-dimensional chamber complexesC(3) andG, and we can construc
the complexesC(3)

Λ andGΛ by first projecting all the cones throughpΛ and then forming
their common refinement.

After transporting the hyperplanex + y + z + w = 0 of R4 into the hyperplanez = 0
through the orientation-preserving isometry

T4 := 1

2


1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

−1 −1 −1 −1

 , (61)

we can work in the coordinates(x, y, z) and look at the intersections of the complexes w
the hyperplanez = 1 of R3.

Figures 5–7 show the complexes intersected with the hyperplanez = 1 and also the
complexes modulo the symmetryλ �→ −λrev, which translates into a reflection along t
central (vertical) line of the complexes. This symmetry reflects the symmetry of the D
diagrams forAn. Figure 8 shows that even though regions appear and disappear alo
lines of the complex (facets of the full-dimensional cones of the complexes), the comp
given by simply looking at the number of regions in the permutahedra is coarser.

Observation 7.3. For A3, only six generic cases occur. Generic permutahedra are alw
partitioned into213, 229, 261, 277, 325or 337regions. Degenerate cases occur along
walls in Fig.6.

Projecting the cones of the glued complexG on λ-space gives 62 distinct cones, 60
them corresponding to individual orbits under the action ofG4 on theβ-coordinates. The
chamber complexGΛ we get by taking their common refinement has 50 regions, o
modulo the symmetryλ �→ −λrev. This complex classifies the combinatorial types ofλ,
i.e., theλ’s with the same partitioned permutahedra and family of polynomials.

Fig. 5. The chamber complexC(3)
Λ .
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Fig. 6. The chamber complexGΛ.

Fig. 7. The chamber complexGΛ for λ1 < −λ4 in terms of fundamental weights.

We now give a simple proof of Theorem 3.2 forA3 and show that regions of th
permutahedron given by (23) are as large as possible.

Theorem 7.4. For A3, the optimal partition of the permutahedron into domains of poly
miality for the weight multiplicities coincides with the partition of the permutahedron
domains of polynomiality for the Duistermaat–Heckman measure.
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Fig. 8. The numbers of regions in the permutahedra.

Proof. We give a computer verified proof that for allλ in the fundamental Weyl chamber
sl4C the intersection ofG with L(λ) defines walls within the permutahedron as determi
by Theorem 3.1. We do this by expressing the walls of the permutahedron as the
hulls of subsets of its vertices. The following is an outline of our algorithm.

The full dimensional conesG1, . . . , G612 of the complexG, when intersectedL(λ),
subdivide the permutahedron into regions. For genericλ, Gk ∩ L(λ) is either empty or
a 3-dimensional region of the permutahedron. Furthermore, a 2-dimensional facet of th
region will come from the intersection of a facetF of Gk with L(λ), and an edge of tha
2-dimensional facet will come from the intersection of a facetL of F with L(λ), and finally
a vertex of that edge will come from the intersection of a facet ofL with L(λ).

(1) SetF equal to the set of all facets of the conesG1, . . . , G612.
(2) Classify the facets inF according to their normals: callFi the subset ofF consisting

of all the facets with normal directionni . Since each facet lies on a unique hyperpla
and since all these hyperplanes go through the origin, two facets will lie on the
hyperplane if and only if they have the same normals up to a scalar multiple. I
case, we find that there are 37 distinct normal directions.

(3) Set Ki = ⋃
F∈Fi

F and verify thatKi is again a convex polyhedral cone. T
verification is done by a truncation and volume comparison method similar t
one used in Observation 7.2. The intersection of theKi with L(λ) will be the walls
partitioning the permutahedron.

(4) For eachi, setVi to be the set of facets of facets ofKi . The elements ofVi are three
dimensional cones.

(5) For eachi, identify thef ∈ Vi whose intersection withL(λ) for genericλ is a point.
The convex hull of those points isKi ∩ L(λ). These points are all vertices of th
permutahedron, and the walls they define are exactly those of Eq. (23).

We will illustrate this last step on an example. We find that one of theVi consists of
the 10 cones, which we will denotef1, . . . , f10. One remarkable thing about the conesfj

is that the first four coordinates of their rays always correspond to one of the fundam
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weights, while the last four correspond to a conjugate of the same fundamental w
That is true for allVi . We have

f1 = pos
(
(ω1,ω1), (ω2,π · ω2), (ω3,ω3)

)
,

f2 = pos
(
(ω1,ω1), (ω2,π · ω2), (ω3, φ · ω3)

)
,

f3 = pos
(
(ω1, σ · ω1), (ω2,π · ω2), (ω3, φ · ω3)

)
,

f4 = pos
(
(ω1, σ · ω1), (ω2,π · ω2), (ω3,ω3)

)
,

f5 = pos
(
(ω1, σ · ω1), (ω3, φ · ω3), (ω3,ω3)

)
,

f6 = pos
(
(ω2,π · ω2), (ω3, φ · ω3), (ω3,ω3)

)
,

f7 = pos
(
(ω1, σ · ω1), (ω1,ω1), (ω3, φ · ω3)

)
,

f8 = pos
(
(ω1,ω1), (ω3, φ · ω3), (ω3,ω3)

)
,

f9 = pos
(
(ω1, σ · ω1), (ω1,ω1), (ω3,ω3)

)
,

f10 = pos
(
(ω1, σ · ω1), (ω1,ω1), (ω2,π · ω2)

)
,

whereσ = (1 3), π = (2 3), φ = (2 4).
To find the intersection of one of these cones withL(λ), we want to see whether the

is a linear combination of its rays with nonnegative coefficients that would lie inL(λ). If
the rays arer1, . . . , rs , we are looking fora1, . . . , as � 0 such that

a1r1 + a2r2 + · · · + asrs = (λ1, λ2, λ3, λ4,∗,∗,∗,∗),

or equivalently,

a1pΛ(r1) + a2pΛ(r2) + · · · + pΛ(asrs) = (λ1, λ2, λ3, λ4),

Hence we will get vertices for thoseλ’s andfj ’s such thatλ ∈ pΛ(fj ). So we compute
thepΛ(fj ):

pΛ(f1) = pos(ω1,ω2,ω3), pΛ(f6) = pos(ω2,ω3),

pΛ(f2) = pos(ω1,ω2,ω3), pΛ(f7) = pos(ω1,ω3),

pΛ(f3) = pos(ω1,ω2,ω3), pΛ(f8) = pos(ω1,ω3),

pΛ(f4) = pos(ω1,ω2,ω3), pΛ(f9) = pos(ω1,ω3),

pΛ(f5) = pos(ω1,ω3), pΛ(f10) = pos(ω1,ω2).

Only the first four of the cones span the fundamental Weyl chamber; the other six
intersectL(λ) for genericλ.

Observing that the last four coordinates of the rays of thefj ’s can always be obtaine
by applying a single permutation to the first four, we can rewritef1, f2, f3, f4 as
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f1 = pos
((

ω1, (2 3) · ω1
)
,

(
ω2, (2 3) · ω2

)
,

(
ω3, (2 3) · ω3

))
,

f2 = pos
((

ω1, (2 4 3) · ω1
)
,

(
ω2, (2 4 3) · ω2

)
,

(
ω3, (2 4 3) · ω3

))
,

f3 = pos
((

ω1, (1 2 4 3) · ω1
)
,

(
ω2, (1 2 4 3) · ω2

)
,

(
ω3, (1 2 4 3) · ω3

))
,

f4 = pos
((

ω1, (1 2 3) · ω1
)
,

(
ω2, (1 2 3) · ω2

)
,

(
ω3, (1 2 3) · ω3

))
.

It then follows that

f1 ∩ L(λ) = (
λ, (2 3) · λ)

,

f2 ∩ L(λ) = (
λ, (2 4 3) · λ)

,

f3 ∩ L(λ) = (
λ, (1 2 4 3) · λ)

,

f4 ∩ L(λ) = (
λ, (1 2 3) · λ)

which means there will be a wall with vertices

(2 3) · λ = (λ1, λ3, λ2, λ4) = λ′,

(1 2 3) · λ = (λ3, λ1, λ2, λ4) = (1 2)λ′,

(2 4 3) · λ = (λ1, λ3, λ4, λ2) = (3 4)λ′,

(1 2 4 3) · λ = (λ3, λ1, λ4, λ2) = (1 2)(3 4)λ′

in the permutahedron forλ. This wall is the convex hull ofW · λ′ with W the parabolic
subgroup〈(1 2), (3 4)〉. All these vertices have the same scalar product with(1,1,−1,−1),
and thus they lie on the same hyperplane with normal(1,1,−1,−1). They are also the onl
points ofS4 · λ lying on that hyperplane (forλ generic).

This process is automated, and we can express all the walls in this fashion by rep
this process for all theVi ’s. We finally check that these walls are the same as those
partition the permutahedron for the DH-measure.�

The set of domains for a given permutahedron is closed under the action of the
group, so they come into orbits. Out of the 64 orbits of cones in the chamber compG,
at least 22 orbits (when there are 213 domains) and at most 31 orbits (when there a
domains) appear at a time.

7.3. Further observations onA3

With the chamber complex and all the weight polynomials forA3 in hand, we can tes
whether the bounds on the number of parallel linear factors from Theorems 6.2 and
tight in this case. Fork = 4, and a generic dominant weight, we should be getting at
two parallel linear factor in the directions conjugate toω1 or ω3, and three parallel linea
factors in the directions conjugate toω2, for both the weight polynomials in the bounda
regions and the jumps between adjacent regions.
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For genericλ, two full dimensional domains are adjacent if the corresponding cones
the chamber complex are adjacent. This allows us to test for factorizations on the cham
complex level and thus work with allλ at once, so to speak. We have verified that
bounds are met exactly here: when extra linear factors occur, they are not part of the p
family

For nongenericλ, we have to be careful when relating adjacency between regio
the permutahedron and adjacency between cones. This is because, in three dimensions
example, it is possible for two cones to touch along an edge but not along a face, and if
cut them with a hyperplane going through that edge, their two-dimensional intersectio
become adjacent because they have an edgein common. We get problems on the w
λ2 = λ3 of the fundamental Weyl chamber, for instance. The weight polynomials in
case all have the formγ (γ + 1), and the jumps between adjacent cones always hav
form

γ (γ + 1) − γ ′(γ ′ + 1
) = (

γ − γ ′)(
γ + γ ′ + 1

)
.

Hence we don’t get parallel linear factors at all in this case. For the casesλ1 = λ2 and
λ3 = λ4, we get 49 or 61 domains generically (see [14] for a study of the Duisterm
Heckman function and its jumps for one of the 49 domain generic cases). The w
polynomials are at most quadratic in this case, and we verify that we get two pa
factors in every jump.

The zero weight does not always appear in the weight space decomposition ofλ, but for
λ generic, there will be a non-empty domain of the permutahedron that contains the
(even if it is not a weight). This domain is invariant under the action of the Weyl group
we will call it thecentral domain.

We can describe the generic central domains forA3. The diagram on the left in Fig.
shows the four types of domains forλ1 < −λ4. The light region corresponds to cub
central domains. In the region next to it, we get truncated cubes: four vertices in tetra
position in a cube are truncated, and we get six hexagonal faces and four triangula
forming a polytope with 16 vertices. In the remaining two darker regions, we get tetrah
in two different orientations (the central domain vanishes on the wall between them).
the hyperplane supporting a wall goes thought the origin, the bounded part giving th

Fig. 9. Central domains according to the shape of the polytope (left) and theweight polynomials (right).
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also contains the origin, and the central domain then vanishes (degenerates to a
point). This occurs whenλ = −λrev, λ2 = 0 orλ3 = 0.

The behavior of the weight polynomials, as polynomials in bothλ andβ , is slightly
different. For genericλ, we get only two of them (four if we don’t work modulo th
Dynkin diagram symmetry). The diagram on the right in Fig. 9 shows the separation
polynomial in the light region does not depend on theβ-coordinates, thus showing th
permutahedra forA3 obtained by perturbing around the permutahedra for the fundam
weightsω1 andω3 have tetrahedral central domains over which the multiplicity func
is constant (for fixedλ). Domains like these are calledlacunary domains in [14]. For
λ1 < −λ4, the polynomials are

p(light) = 1

2
(λ2 − λ3 + 1)(λ1 − λ2 + 1)(λ1 − λ3 + 2),

p(dark) = 1

2
(λ1 − λ2 + 1)

× (−λ2
2 − 2λ2

3 + λ3λ4 − λ2λ3 − λ2λ4 + λ2 − λ4 + 2− 2h2(β1β2β3)
)
,

whereh2 is the complete homogeneous symmetric function:

h2(β1, β2, β3) = β2
1 + β2

2 + β2
3 + β1β2 + β2β3 + β1β3.

Remark 7.5. Dealing with A4 is more difficult computationally. For example, th
permutahedron for the weightλ = δ splits into 15230 regions, and this number is
lower bound on the number of maximal cells of the chamber complex for the w
multiplicities.
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