Test Prep 2

Let C_1 be the arc of the curve $x + 4y^2 = 1$ from (1,0) to $(0,\frac{1}{2})$. And let C_2 be the line segment from $(0,\frac{1}{2})$ to $(-1,\frac{3}{2})$. Let C consist of C_1 followed by C_2 . The curve C is shown below with the desired orientation.

1. Give a parameterization for C_1 .

3. Let $\mathbf{F} = \langle x, -y \rangle$ be a vector field.

Using your parameterizations, compute $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$