
16.4: Green’s Theorem

Green’s Theorem states: On a positively oriented, simple closed curve C that encloses the region D
where P and Q have continuous partial derivatives, we have∫

C

P dx + Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

As noted in class, when working with positively oriented closed curve, C, we typically use the notation:∮
C

P dx + Q dy =

∫
C

P dx + Q dy.

NOTES:

1. This theorem is for closed curves.

2. It is true for conservative and nonconservative vector fields. But for conservative vector fields the
value of such an integral is just zero (remember that ∂Q

∂x
− ∂P

∂y
= 0 for a conservative vector field).

So really this theorem is for nonconservative vector fields over closed curves.

3. This theorem gives an important relationship between the boundary a line integral of the boundary
of a region and the double integral itself. These facts are useful in several ways:

(a) Computing a line integral faster : This gives us options. If it is a pain to parameterize the
closed curve, then we can instead do a double integral. Both ways work, but this theorem
gives us options to choose a faster computation method.

(b) Computing a double integral with a line integral : Sometimes it may be easier to work over
the boundary than the interior. Green’s theorem gives us a connection between the two so
that we can compute over the boundary. For example we found that we can find the area of
a two-dimensional region in several way using line integrals as follows:

Area of D =

∫∫
D

1dA =

∮
C

−y dx =

∮
C

x dy =
1

2

∮
C

−ydx + xdy

4. We will interpret the physical significance of this result more in subsequent chapters. For now you
need to be able to compute with it. The following page contains two examples.



• Compute

∮
C

−2y3 dx + 2x3 dy where C is the circle of radius 3 centered at the origin.

ANSWER: Using Green’s theorem we need to describe the interior of the region in order to
set up the bounds for our double integral. This is best described with polar coordinates,
0 ≤ θ ≤ 2π and 0 ≤ r ≤ 3. And we get∮

C

−2y3 dx + 2x3 dy =

∫∫
D

(6x2 + 6y2)dA

= 6

∫ 2π

0

∫ 3

0

r2rdrdθ

= 6

∫ 2π

0

1

4
r4

∣∣∣∣3
0

dθ

= 6

∫ 2π

0

81

4
dθ

=
243

2
θ

∣∣∣∣2π

0

dx = 243π

So if F(x, y) = 〈−2y3, 2x3〉 was a force field say in units Newtons, then we just calculated

WORK =

∮
C

F · dr =

∮
C

−2y3 dx + 2x3 dy = 243π Joules.

• Compute

∮
C

x dx + xy2 dy where C is the triangle with vertices (0,0), (2,0), (2,6).

ANSWER: Using Green’s theorem we need to describe the interior of the region in order to
set up the bounds for our double integral. The triangle has sides with equations (in x and
y) of y = 0, x = 2 and y = 3x. If you graph the region, you see that it can be described as a
‘top/bottom’ region using 0 ≤ x ≤ 2 with 0 ≤ y ≤ 3x. And we get∮

C

x dx + xy2 dy =

∫∫
D

(y2 − 0)dA

=

∫ 2

0

∫ 3x

0

y2dydx

=

∫ 2

0

1

3
y3

∣∣∣∣3x

0

dx

=

∫ 2

0

9x3dx

=
9

4
x4

∣∣∣∣2
0

dx = 36

Remember if F(x, y) = 〈x, xy2〉 was a force field say in units Newtons, then we just calculated

WORK =

∮
C

F · dr =

∮
C

x dx + xy2 dy = 36 Joules.


