Discussion of the Proof of Green's Theorem (from 16.4)

Green's Theorem states: On a positively oriented, simple closed curve C that encloses the region D

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

The general proof goes beyond the scope of this course, but in a simple situation we can prove it. Consider the region:

We will show that $\int_{C} P d x=-\iint_{D} \frac{\partial P}{\partial y} d A$ and $\int_{C} Q d y=\iint_{D} \frac{\partial Q}{\partial y} d A$
The double integral looks like:

$$
\iint_{D} \frac{\partial P}{\partial y} d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \frac{\partial P}{\partial y} d y d x=\int_{a}^{b} P\left(x, g_{2}(x)\right)-P\left(x, g_{1}(x)\right) d x
$$

Now, let C_{1} be the lower part of the closed curve and C_{2} the upper part. We can parameterize the line integrals by: $C_{1}: x=t, y=g_{1}(t), a \leq t \leq b$ and $-C_{2}: x=t, y=g_{2}(t), a \leq t \leq b$.
Notice that the second gives the opposite orientation which is why I noted that this was $-C_{2}$. Using these parameterization we get

$$
\int_{C} P(x, y) d x=\int_{C_{1}} P(x, y) d x+\int_{C_{2}} P(x, y) d x=\int_{a}^{b} P\left(t, g_{1}(t)\right) d t-\int_{a}^{b} P\left(t, g_{2}(t)\right) d t
$$

This is identical, with opposite sign, to the double integral result and we have

$$
\int_{C} P d x=-\iint_{D} \frac{\partial P}{\partial y} d A
$$

And similarly for $Q(x, y)$:

$$
\iint_{D} \frac{\partial Q}{\partial x} d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \frac{\partial Q}{\partial x} d x d y=\int_{c}^{d} Q\left(h_{2}(y), y\right)-Q\left(h_{1}(y), y\right) d y
$$

Now, let C_{1} be the right part of the closed curve and C_{2} the left part (this is the same as above, I'm just referencing the perspective shift). We can parameterize the line integrals by:
$C_{1}: x=h_{2}(t), y=t, c \leq t \leq d$ and $-C_{2}: x=h_{1}(t), y=t, c \leq t \leq d$.
Again, notice that the second gives the opposite orientation which is why I noted that this was $-C_{2}$. Using these parameterization we get

$$
\int_{C} Q(x, y) d y=\int_{C_{1}} Q(x, y) d y+\int_{C_{2}} Q(x, y) d y=\int_{c}^{d} Q\left(h_{2}(t), t\right) d t-\int_{c}^{d} Q\left(h_{1}(t), t\right) d t
$$

This is identical, with the same sign, to the double integral result and we have

$$
\int_{C} Q d y=\iint_{D} \frac{\partial Q}{\partial x} d A
$$

