The charts on the next two page give one summary of how to think about computing line and surface integrals given various situations.

Given a curve, C,

parameterized by $\mathrm{r}(\mathrm{t}), \mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$

Integrating a scalar function with respect to arc length:
$z=f(x, y)$ or $w=f(x, y, z)$

Use parameterization
Replace
$x=x(t), y=y(t)$,
$z=z(t)$, and $\mathrm{ds}=\left|\mathrm{r}^{\prime}(\mathrm{t})\right| \mathrm{dt}$

Integrating over a vector field:

$$
F(x, y)=P(x, y, z) i+Q(x, y, z) j
$$

$$
F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) j+R(x, y, z) \mathbf{k}
$$

Conservative

Only if curl $\mathbf{F}=\mathbf{0}$
In 2D, that condition
becomes: $P_{y}=Q_{x}$

Non conservative
curl $\mathrm{F} \neq 0$,
or in $2 \mathrm{D}, \mathrm{P}_{\mathrm{y}} \neq \mathrm{Q}_{\mathrm{x}}$

Use the paramterization
Replace $x=x(t)$,
$y=y(t), z=z(t)$,
$\mathrm{dr}=\mathrm{r}^{\prime}(\mathrm{t}) \mathrm{dt}$

Find a potential function.

1. Integrate P wrt x
2. Integrate Q wrt y
3. Integrate R wrt z
4. Find f.

Use the paramterization

$$
\text { Replace } x=x(t) \text {, }
$$

$$
\mathrm{y}=\mathrm{y}(\mathrm{t}), \mathrm{z}=\mathrm{z}(\mathrm{t}),
$$

$$
\mathrm{dr}=\mathbf{r}^{\prime}(\mathrm{t}) \mathrm{dt}
$$

Closed curve
Use
Green's Theorem
or Stoke's Theorem

Given a surface, S, parameterized by $r(u, v)$, where (u, v) come from some domain D.

Use param.
Replace
$x=x(u, v)$,
$y=y(u, v)$,
$z=z(u, v)$
$d S=\left|r_{u} \mathbf{x} r_{v}\right| d A$

$$
\begin{gathered}
\\
\text { Integrating over a vector field: } \\
F(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
\end{gathered}
$$

If $\operatorname{div} F=0$,
then \mathbf{F} can be written as the curl of another vector field, so

$$
\mathbf{F}=\operatorname{curl} \mathbf{G}
$$

Use the paramterization Replace $x=x(u, v)$, $y=y(u, v), z=z(u, v)$, $d S=\left(r_{u} \mathbf{x} r_{v}\right) d A$	If you can find G, then try Stoke's Theorem.	Use the paramterization Replace $x=x(u, v)$, $y=y(u, v), z=z(u, v)$, $d S=\left(r_{u} \mathbf{x} r_{v}\right) d A$

