16.6 Parameterizing Surfaces

Recall that $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ with $a \leq t \leq b$ gives a parameterization for a curve C. In section 16.2-16.4, we learned how to make measurements along curves for scalar and vector fields by using line integrals " \int_{C} ". We computed these line integrals by first finding parameterizations (unless special theorems apply).

In a similar way, we will parameterize a surface S using

$$
\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle
$$

where (u, v) are constrained to some region D in the $u v$-plane. In section 16.7-16.9, we learned how to make measurements across surfaces for scalar and vector fields by using surface integrals " \iint_{S} ". We will compute these surface integrals by first finding parameterizations (and later we will learn theorems that apply in special cases).

For now, let's focus on parameterization.
Questions: Find a parameterization for each surface:

1. The part of the surface $z=10$ that is above the square $-1 \leq x \leq 1,-2 \leq y \leq 2$.
2. The part of the surface $x-y+z=4$ that is within the cylinder $x^{2}+y^{2}=9$.
3. The part of the surface $z=x^{2}+y^{2}$ that is above the region in the $x y$-plane given by $0 \leq x \leq 1$, $0 \leq y \leq x^{2}$.
4. The part of the paraboloid $y=9-x^{2}-z^{2}$ that is on the positive y side of the $x z$-plane.
5. The part of the circular cylinder $x^{2}+y^{2}=4$ that is between the planes $z=1$ and $z=5$.
6. The upper hemisphere of the sphere $x^{2}+y^{2}+z^{2}=9$.
7. The entire sphere $x^{2}+y^{2}+z^{2}=16$.
8. The surface of revolution given by rotating the region bounded by $y=x^{3}$ for $0 \leq x \leq 2$ about the x-axis.
9. Find the parameterization for all three sides of the solid object within $x^{2}+y^{2}=1$, above $z=0$ and below $z=5-x$ shown here (ignore the curve):

Solutions:

1. Notes: The parameterization is already given! $\mathbf{r}(u, v)=\langle u, v, 10\rangle$, (I am just letting $x=u$ and $y=v$).
You could also just leave them as x and y and give the parameterization as: $\mathbf{r}(x, y)=\langle x, y, 10\rangle$ with $-1 \leq x \leq 1,-2 \leq y \leq 2$.
2. Notes: The surface can easily be solve for z in terms of x and y. $\mathbf{r}(u, v)=\langle u, v, 4-u+v\rangle$, (Letting $x=u$ and $y=v$, again). Also can be written as: $\mathbf{r}(x, y)=\langle x, y, 4-x+y\rangle$ for points (x, y) inside the circular region $x^{2}+y^{2} \leq 4$ (which we will do with polar when we get to the integral).
3. $\mathbf{r}(x, y)=\left\langle x, y, x^{2}+y^{2}\right\rangle$ for points (x, y) inside the region given by $0 \leq x \leq 1,0 \leq y \leq x^{2}$ (again, we will account for this in the integral later).
4. Notes: This time it is easiest to give y in terms of x and z.
$\mathbf{r}(x, z)=\left\langle x, 9-x^{2}-z^{2}, z\right\rangle$ for points (x, z) within the region when $y \geq 0$ on the surface. That would be when $9-x^{2}-z^{2} \geq 0$ which would be the circular region $x^{2}+z^{2} \leq 9$.
5. Notes: This is different from the previous cases, because one variable is 'missing' from the surface we wish to describe. That means z can be anything and we should make it one of our parameters. Then we need to find a parameterization for the other two variables. Look to use Sine and Cosine! $\mathbf{r}(u, v)=\langle 2 \cos (u), 2 \sin (u), v\rangle$, (This time, I am letting $x=2 \cos (u), y=2 \sin (u)$ and $z=v)$.
We need $1 \leq v \leq 5$ from the given condition.
And we need $0 \leq u \leq 2 \pi$ to go all the way around the cylinder.
6. Notes: This could be done in a couple ways. Here are two different parameterizations:
(a) We could just get z in terms of x and y. That would give $z=\sqrt{9-x^{2}-y^{2}}$ for the upper hemisphere. Giving the parameterization $\mathbf{r}(x, y)=\left\langle x, y, \sqrt{9-x^{2}-y^{2}}\right\rangle$, where (x, y) come from the region that corresponds to $z \geq 0$ in the surface equation, so $9-x^{2}-y^{2} \geq 0$, which is the circular region $x^{2}+y^{2} \leq 9$.
(b) We could use spherical coordinators. Notice that the radius of the sphere, $\rho=3$, is fixed. $\mathbf{r}(\phi, \theta)=\langle 3 \sin \phi \cos \theta, 3 \sin \phi \sin \theta, 3 \cos \phi\rangle$, where (ϕ, θ) satisfy $0 \leq \phi \leq \pi / 2$ and $0 \leq \theta \leq 2 \pi$.
7. Notes: I would use spherical coordinates here (or break the problem into two parts; upper and lower hemisphere). Again the radius of the sphere, $\rho=4$, is fixed.
$\mathbf{r}(\phi, \theta)=\langle 4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi\rangle$, where (ϕ, θ) would satisfy $0 \leq \phi \leq \pi$ and $0 \leq \theta \leq 2 \pi$.
8. Notes: For a surface of revolution about the x-axis, there is a circle of radius $f(x)$ about each value of x. So we can parameterize each of those circles to get
$\mathbf{r}(u, v)=\langle u, f(u) \cos (v), f(u) \sin (v)\rangle$, so I am just replacing $x=u$ and then paramterizing the circle. The range of values would be $0 \leq u \leq 2$, and $0 \leq v \leq 2 \pi$.
9. Here is a parameterization for each side:
(a) Bottom: $\mathbf{r}(x, y)=\langle x, y, 0\rangle$, where (x, y) are in the region $x^{2}+y^{2} \leq 1$.
(b) Top: $\mathbf{r}(x, y)=\langle x, y, 5-x\rangle$, where (x, y) are in the region $x^{2}+y^{2} \leq 1$.
(c) Sides: $\mathbf{r}(u, v)=\langle\cos (u), \sin (u), v\rangle$, where (u, v) satisfy $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 5-\cos (u)$. (I got the last bound because z is always between 0 and $5-x$ and in this parameterization $z=v$ and $x=\cos (u))$.

Surface Area

After parameterizing, our next step will be to give an expression for surface area.
Way back in 15.6, we already learned that the surface area for a surface parameterized by $\mathbf{r}(x, y)=$ $\langle x, y, f(x, y)\rangle$ over a region D is given by $\iint_{D} 1 d S$, where

$$
d S=\left|r_{x} \times r_{y}\right| d A=\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1} d A
$$

That was only for those particular parameterizations.
But the same general analysis applies. For a parameterization, $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$. We have
$\mathbf{r}_{u}=\left\langle x_{u}, y_{u}, z_{u}\right\rangle=$ a tangent vector to the surface in the u-direction.
$\mathbf{r}_{v}=\left\langle x_{v}, y_{v}, z_{v}\right\rangle=$ a tangent vector to the surface in the u-direction.
We then get several facts:

1. \mathbf{r}_{u} and \mathbf{r}_{v} together determine the tangent plane at a given point (because they are both 'on' this plane). So
$\mathbf{r}_{u} \times \mathbf{r}_{v}$ would be a normal vector for the surface at a given point (and a normal for the tangent plane at that point).
2. If a small change in u and a small change in v are made, Δu and Δv, respectively, then we can estimate the resulting change in surface area by

$$
\Delta S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v
$$

As Δu and Δv go to zero, this gets more precise and we write the surface area differential for this relationship as

$$
d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

3. From 15.6, the surface area of the surface is given by

$$
\text { Surface area }=\iint_{D} d S=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

4. Some shortcuts:
(a) For a parameterization of the form $\mathbf{r}(x, y)=\langle x, y, f(x, y)\rangle$, we get

$$
\begin{gathered}
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left\langle-f_{x},-f_{y}, 1\right\rangle \\
\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|=\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1}
\end{gathered}
$$

(b) For a parameterization of the form $\mathbf{r}(\phi, \theta)=\langle a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi\rangle$, we get

$$
\begin{gathered}
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left\langle a^{2} \sin ^{2} \phi \cos \theta, a^{2} \sin ^{2} \phi \sin \theta, a^{2} \cos ^{2} \phi\right\rangle \\
\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=a^{2} \sin \phi
\end{gathered}
$$

