
16.6 Parameterizing Surfaces
Recall that r(t) = 〈x(t), y(t), z(t)〉 with a ≤ t ≤ b gives a parameterization for a curve C. In section
16.2-16.4, we learned how to make measurements along curves for scalar and vector fields by using
line integrals “

∫
C
”. We computed these line integrals by first finding parameterizations (unless special

theorems apply).

In a similar way, we will parameterize a surface S using

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉,

where (u, v) are constrained to some region D in the uv-plane. In section 16.7-16.9, we learned how
to make measurements across surfaces for scalar and vector fields by using surface integrals “

∫∫
S

”. We

will compute these surface integrals by first finding parameterizations (and later we will learn theorems
that apply in special cases).

For now, let’s focus on parameterization.

Questions: Find a parameterization for each surface:

1. The part of the surface z = 10 that is above the square −1 ≤ x ≤ 1, −2 ≤ y ≤ 2.

2. The part of the surface x− y + z = 4 that is within the cylinder x2 + y2 = 9.

3. The part of the surface z = x2 + y2 that is above the region in the xy-plane given by 0 ≤ x ≤ 1,
0 ≤ y ≤ x2.

4. The part of the paraboloid y = 9− x2 − z2 that is on the positive y side of the xz-plane.

5. The part of the circular cylinder x2 + y2 = 4 that is between the planes z = 1 and z = 5.

6. The upper hemisphere of the sphere x2 + y2 + z2 = 9.

7. The entire sphere x2 + y2 + z2 = 16.

8. The surface of revolution given by rotating the region bounded by y = x3 for 0 ≤ x ≤ 2 about the
x-axis.

9. Find the parameterization for all three sides of the solid object within x2 + y2 = 1, above z = 0
and below z = 5− x shown here (ignore the curve):



Solutions:

1. Notes: The parameterization is already given!
r(u, v) = 〈u, v, 10〉, (I am just letting x = u and y = v).
You could also just leave them as x and y and give the parameterization as:
r(x, y) = 〈x, y, 10〉 with −1 ≤ x ≤ 1, −2 ≤ y ≤ 2.

2. Notes: The surface can easily be solve for z in terms of x and y.
r(u, v) = 〈u, v, 4− u + v〉, (Letting x = u and y = v, again). Also can be written as:
r(x, y) = 〈x, y, 4− x + y〉 for points (x, y) inside the circular region x2 + y2 ≤ 4 (which we will do
with polar when we get to the integral).

3. r(x, y) = 〈x, y, x2 + y2〉 for points (x, y) inside the region given by 0 ≤ x ≤ 1, 0 ≤ y ≤ x2 (again,
we will account for this in the integral later).

4. Notes: This time it is easiest to give y in terms of x and z.
r(x, z) = 〈x, 9 − x2 − z2, z〉 for points (x, z) within the region when y ≥ 0 on the surface. That
would be when 9− x2 − z2 ≥ 0 which would be the circular region x2 + z2 ≤ 9.

5. Notes: This is different from the previous cases, because one variable is ‘missing’ from the surface
we wish to describe. That means z can be anything and we should make it one of our parameters.
Then we need to find a parameterization for the other two variables. Look to use Sine and Cosine!
r(u, v) = 〈2 cos(u), 2 sin(u), v〉, (This time, I am letting x = 2 cos(u), y = 2 sin(u) and z = v).
We need 1 ≤ v ≤ 5 from the given condition.
And we need 0 ≤ u ≤ 2π to go all the way around the cylinder.

6. Notes: This could be done in a couple ways. Here are two different parameterizations:

(a) We could just get z in terms of x and y. That would give z =
√

9− x2 − y2 for the upper
hemisphere. Giving the parameterization
r(x, y) = 〈x, y,

√
9− x2 − y2〉, where (x, y) come from the region that corresponds to z ≥ 0

in the surface equation, so 9− x2 − y2 ≥ 0, which is the circular region x2 + y2 ≤ 9.

(b) We could use spherical coordinators. Notice that the radius of the sphere, ρ = 3, is fixed.
r(φ, θ) = 〈3 sin φ cos θ, 3 sin φ sin θ, 3 cos φ〉, where (φ, θ) satisfy 0 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π.

7. Notes: I would use spherical coordinates here (or break the problem into two parts; upper and
lower hemisphere). Again the radius of the sphere, ρ = 4, is fixed.
r(φ, θ) = 〈4 sin φ cos θ, 4 sin φ sin θ, 4 cos φ〉, where (φ, θ) would satisfy 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π.

8. Notes: For a surface of revolution about the x-axis, there is a circle of radius f(x) about each
value of x. So we can parameterize each of those circles to get
r(u, v) = 〈u, f(u) cos(v), f(u) sin(v)〉, so I am just replacing x = u and then paramterizing the
circle. The range of values would be 0 ≤ u ≤ 2, and 0 ≤ v ≤ 2π.

9. Here is a parameterization for each side:

(a) Bottom: r(x, y) = 〈x, y, 0〉, where (x, y) are in the region x2 + y2 ≤ 1.

(b) Top: r(x, y) = 〈x, y, 5− x〉, where (x, y) are in the region x2 + y2 ≤ 1.

(c) Sides: r(u, v) = 〈cos(u), sin(u), v〉, where (u, v) satisfy 0 ≤ u ≤ 2π and 0 ≤ v ≤ 5 − cos(u).
(I got the last bound because z is always between 0 and 5− x and in this parameterization
z = v and x = cos(u)).



Surface Area
After parameterizing, our next step will be to give an expression for surface area.
Way back in 15.6, we already learned that the surface area for a surface parameterized by r(x, y) =
〈x, y, f(x, y)〉 over a region D is given by

∫∫
D

1 dS, where

dS = |rx × ry|dA =
√

(fx)2 + (fy)2 + 1 dA.

That was only for those particular parameterizations.
But the same general analysis applies. For a parameterization, r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉. We
have

ru = 〈xu, yu, zu〉 = a tangent vector to the surface in the u-direction.
rv = 〈xv, yv, zv〉 = a tangent vector to the surface in the u-direction.

We then get several facts:

1. ru and rv together determine the tangent plane at a given point (because they are both ‘on’ this
plane). So
ru × rv would be a normal vector for the surface at a given point (and a normal for the tangent
plane at that point).

2. If a small change in u and a small change in v are made, ∆u and ∆v, respectively, then we can
estimate the resulting change in surface area by

∆S = |ru × rv|∆u∆v.

As ∆u and ∆v go to zero, this gets more precise and we write the surface area differential for this
relationship as

dS = |ru × rv|dudv.

3. From 15.6, the surface area of the surface is given by

Surface area =

∫∫
D

dS =

∫∫
D

|ru × rv| dA

4. Some shortcuts:

(a) For a parameterization of the form r(x, y) = 〈x, y, f(x, y)〉, we get

rx × ry = 〈−fx,−fy, 1〉

|rx × ry| =
√

(fx)2 + (fy)2 + 1

(b) For a parameterization of the form r(φ, θ) = 〈a sin φ cos θ, a sin φ sin θ, a cos φ〉, we get

rx × ry = 〈a2 sin2 φ cos θ, a2 sin2 φ sin θ, a2 cos2 φ〉

|rφ × rθ| = a2 sin φ


