1. (10 pts) For both parts below, give the general solution:

(a) y"+2y +y=3t2-1
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2. (10 pts) For ALL parts, assume the mass-spring system has a mass of m = 2 kg, a spring
constant k¥ = 5 N/m, and NO external forcing. Thus, 2u” + yu’ + 5u = 0. Include UNITS in your

final answers.
(a) Assume NO damping and the initial conditions u(0) = 0.5 m and «/(0) = 1 m/s.
Find the solution (find all constants). .
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(b) Assume there is damping with v = 2 N/(m/s). The solution exhibits vibrations (with
decreasing amplitude). What is the quasi-period?
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(c) Give the smallest value of « for which the solution will NOT exhibit vibrations.
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2u" + yu' + 5u = Fy cos(wt).

3. (10 pts) For ALL parts, assume the mass-spring system has a mass of m = 2 kg, a spring
constant k = 5 N/m, and an external forcing of the form F(t) = Fjcos(wt) Newtons. Thus,

l resongnt &—

(a) Assume there is NO damping. What particular value of w will lead to vibrations with
increasing and unbounded amplitude?
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(b) Assume there is damping with v = 2 N/(

+
m/s) and 4(0) = 0 m and «/(0) = 0 m/s.
Also assume F'(t) = 39 cos(t) N. You are told the solution takes the form:

u(t) = c;eM cos(ut) + czeM sin(ut) + 9 cos(wt) + 6 sin(wt).
e What are the values of A\
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, w, ¢, and ¢3? (You only have to give units for x4 and w).
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e The graph of the full solution (solid) and the steady state solution (dotted) are given
below. Find the indicated lengths P and ). (include units!)
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4. (10 pts) Consider the model u” + 4u’' + 3u = 0 with »(0) = 0.3 m, ¥/(0) = —1 m/s.

(a) What can we say about this system? (Circle one):
Critically Damped OR (Overdamped ) OR Exhibits Vibrations.
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(b) Solve for u(t). (find all constants)
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(c) Find the one, and only, time the mass will be at the equilibrium position (i.e. when u(t) = 0).
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5. (10 pts) (The two parts below are not related)

(a) A 3 kg object stretches a spring 10 cm beyond its natural length (and is at rest).
The damping force is 5 N when the upward velocity is 6 m/s. There is no external forcing.
Initially, the mass is pushed upward 5 cm and given an initial downward velocity of 20 cm/s.
Set up the differential equation AND initial conditions for the dlsplacement u(t)

Watch the units! (DO NOT SOLVE)
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(b) The function y;(t) = t? is one solution to the homogeneous equation t?y” — 2y = 0. Use
reduction of order to find the general solution to t2y” — 2y = % with ¢ > 0.
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