1. (10 pts) For both parts below, give the general solution:

(a)
$$y'' + 2y' + y = 3t^2 - 1$$

 $r^2 + 2r + 1 = 0 \Rightarrow (r + D^2 = 0 \Rightarrow r = -1)$
 $c_1 e^{-t} + c_2 + e^{-t}$
 $Y(t) = A + C_2 + B + C_1 + C_2 + C_3 + C_4 + C_4 + C_5 + C_5$

$$4A+B=0 \Rightarrow B=-4A=-12$$

 $2A+2B+C=-1 \Rightarrow C=-1-2A-2B=-1-6+24=17$

$$y(t) = c_1 e^{-t} + c_2 t e^{-t} + 3t^2 - 12t + 17$$

(b) $y'' - 4y = 5 + 3e^{2t}$.

$$r^{2}-4=0 \Rightarrow r=\pm 2$$
 $c_{1}e^{-2t}+c_{2}e^{2t}$

$$Y(t) = A + B + e^{2t}$$
 $Y'(t) = Be^{2t} + 2B + e^{2t}$ $Y''(t) = 2Be^{2t} + 2Be^{2t} + 4B + e^{2t}$ $= 4Be^{2t} + 4B + e^{2t}$ $= 4Be^{2t} + 4B + e^{2t}$ $= 5 + 3e^{2t}$

$$-4A + 4B + e^{2t} = 5 + 3e^{2t}$$

$$-4A = 5 \Rightarrow A = -\frac{5}{4}$$

$$+B = 3 \Rightarrow B = \frac{3}{4}$$

$$y(t) = c_1 e^{-2t} + c_2 e^{-2t} - \frac{5}{4} + \frac{3}{4} + e^{2t}$$

- 2. (10 pts) For ALL parts, assume the mass-spring system has a mass of m=2 kg, a spring constant k=5 N/m, and NO external forcing. Thus, $2u'' + \gamma u' + 5u = 0$. Include <u>UNITS</u> in your final answers.
 - (a) Assume NO damping and the initial conditions u(0) = 0.5 m and u'(0) = 1 m/s. Find the solution (find all constants).

$$2u'' + 5u = 0 \Rightarrow 2r^{2} + 5 = 0 \Rightarrow r = \pm \sqrt{2} i$$

$$u(t) = c_{1} \cos(\sqrt{2}t) + c_{2}\sin(\sqrt{2}t)$$

$$u'(t) = \sqrt{2} c_{1}\sin(\sqrt{2}t) + \sqrt{2} c_{2}\cos(\sqrt{2}t)$$

$$u'(0) = c_{1} = 0.5$$

$$u'(0) = \sqrt{2} c_{2} = 1 \Rightarrow c_{2} = \sqrt{2}$$

(b) Assume there is damping with $\gamma=2$ N/(m/s). The solution exhibits vibrations (with decreasing amplitude). What is the quasi-period?

$$2r^{2}+2r+5=0$$
 $r = \frac{-2}{2(1)} \pm \frac{1}{2(1)}\sqrt{4-40}$
 $r = -\frac{1}{2} \pm \frac{1}{4}6i$
 $r = -\frac{1}{2} \pm \frac{3}{2}i$
 $\lambda = -\frac{1}{2} + \frac{3}{2}i$
 $\lambda = -\frac{1}{2} + \frac{3}{2}i$

(c) Give the smallest value of γ for which the solution will NOT exhibit vibrations.

$$8 = 2\sqrt{mK} = 2\sqrt{2.5} = 2\sqrt{10} \frac{N}{m/s}$$

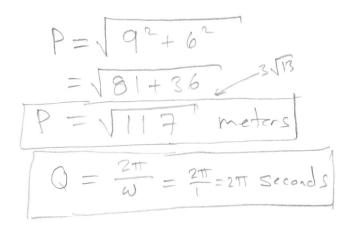
- 3. (10 pts) For ALL parts, assume the mass-spring system has a mass of m=2 kg, a spring constant k = 5 N/m, and an external forcing of the form $F(t) = F_0 \cos(\omega t)$ Newtons. Thus, $2u'' + \gamma u' + 5u = F_0 \cos(\omega t).$
 - (a) Assume there is NO damping. What particular value of ω will lead to vibrations with increasing and unbounded amplitude?

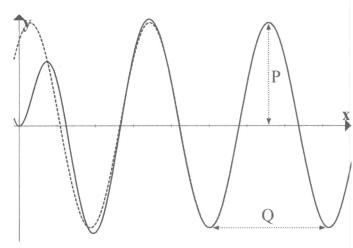
- (b) Assume there is damping with $\gamma = 2 \text{ N/(m/s)}$ and u(0) = 0 m and u'(0) = 0 m/s. Also assume $F(t) = 39\cos(t)$ N. You are told the solution takes the form: $u(t) = c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\lambda t} \sin(\mu t) + 9 \cos(\omega t) + 6 \sin(\omega t).$

• What are the values of
$$\lambda$$
, μ , ω , c_1 , and c_2 ? (You only have to give units for μ and ω).

$$|\lambda| = -\frac{1}{2} \int_{M}^{Rd} = \frac{1}{2} \int_{SCC}^{Rd} = \frac$$

• The graph of the full solution (solid) and the steady state solution (dotted) are given below. Find the indicated lengths P and Q. (include units!)





- 4. (10 pts) Consider the model u'' + 4u' + 3u = 0 with u(0) = 0.3 m, u'(0) = -1 m/s.
 - (a) What can we say about this system? (Circle one):

 Critically Damped OR Overdamped OR Exhibits Vibrations.

(b) Solve for u(t). (find all constants)

$$r^{2}+4r+3=0 \Rightarrow (r+3)(r+1)=0 \Rightarrow r=-1, r=-3$$
 $u(t)=c_{1}e^{-t}+c_{2}e^{-3t}$
 $u'(t)=-c_{1}e^{-t}-3c_{2}e^{-3t}$
 $u(0)=0.3\Rightarrow c_{1}+c_{2}=0.3$
 $u'(0)=-1\Rightarrow -c_{1}-3c_{2}=-1$
 $-2c_{2}=-0.7\Rightarrow c_{2}=0.35$

$$u(t) = -0.05e^{-t} + 0.35e^{-3t}$$

(c) Find the one, and only, time the mass will be at the equilibrium position (i.e. when u(t) = 0).

$$-0.05e^{\frac{1}{2}} + 0.35e^{-3\frac{1}{2}} = 0$$

$$0.35e^{-3\frac{1}{2}} \stackrel{?}{=} 0.05e^{-\frac{1}{2}}$$

$$7 = e^{\frac{1}{2}} \ln(7) = 2 + e^{\frac{1}{2}} \ln(7) \quad \text{Seconds}$$

- 5. (10 pts) (The two parts below are not related)
 - (a) A 3 kg object stretches a spring 10 cm beyond its natural length (and is at rest). The damping force is 5 N when the upward velocity is 6 m/s. There is no external forcing. Initially, the mass is pushed upward 5 cm and given an initial downward velocity of 20 cm/s. Set up the differential equation AND initial conditions for the displacement u(t).

Watch the units! (DO NOT SOLVE)
$$M = 3$$

$$L = 0.1 \text{ m mg} - kL = 0 \Rightarrow k = \frac{mg}{L^0} = \frac{3.9.8}{0.1} = 294 \frac{N}{m}$$

$$F_d = -8u \Rightarrow S = -8(-6) \Rightarrow 8 = \frac{5}{6} \frac{N}{m/s}$$

$$3u'' + \frac{5}{6}u' + 294u = 0$$
 $u(0) = -0.05$ $u'(0) = 0.2$

(b) The function $y_1(t) = t^2$ is one solution to the homogeneous equation $t^2y'' - 2y = 0$. Use reduction of order to find the general solution to $t^2y'' - 2y = t^6$ with t > 0.

$$y(t) = u(t)t^2 \Rightarrow y' = u't^2 + 2ut, y'' = u''t^2 + 2u't +$$

$$=$$
 $+ 4 + 4 + 3 + 3 + 3 + 3 + 4 + 3$

$$y(t) = y(t) = -\frac{a_1}{3}t^{-1} + a_2t^{-2} + \frac{1}{28}t^{6}$$

 $y(t) = c_1t^{-1} + c_2t^{-2} + \frac{1}{28}t^{6}$