
Math 300 Assignment 5

PROBLEMS: 6.11, 6.18, 6.22, 6.28, 6.31a, 6.37(b), 7.1, 7.2, 7.6, 7.8, 7.17(b), 7.20, 7.30(b)

1. Let p be a prime.
Prove that if p = 3m + 1 for some integer m, then m is must be even.
(This fact implies that such a prime p must also be of the form p = 6n + 1.)

2. Complete TWO of the exploratory problems on the following pages.

The problems above are DUE MONDAY, August 15th at lecture or during office hours.

HOMEWORK NOTES/HINTS

• Problem 6.37b: Use induction on n and during the inductive step you will need to make use of
the binomial theorem (and part (a)).

• Problem 7.6: “The ones digit of a number in the base 8” = “the smallest positive remainder
when the number is divided by 8”. So you need to figure out what 9100 ≡ ??? (mod 8), 10100 ≡ ???
(mod 8), and 11100 ≡ ??? (mod 8) (each answer should be either 0, 1, 2, ..., or 7).

• PROBLEM 7.17(b): Any number, n, must be in one of six congruence classes modulo 6. Show
that the theorem is true for all six cases.

• 1: Try an indirect proof.

• The challenge problems are not due, but I will award at least 1 point of extra credit per challenge
problem correctly completed.

CHALLENGE PROBLEMS: 6.39, 6.51



Math 300 Exploratory Problems
Complete TWO of the following four “exploratory” problems.
(1 extra credit point for each additional exploratory problem completed)

I Define the function π(x) : R ⇒ N ∪ {0} by π(x)=‘the number of primes less than or equal to x’.
So for example π(2) = 1, π(4) = 2, π(7) = 4, and π(10) = 4 (because 2, 3, 5, and 7 are all the
primes less than 10).

It has been proven (called the prime number theorem), that π(x) is ‘approximately the same’ as
the formula x

ln(x)
as x gets larger. To prove this requires tools well beyond the scope of this course.

However, we can get some information in this direction. In the following parts of this problem, I
guide you through a proof that

For n ∈ N, π(2n)− π(n) < 1.3863
n

ln(n)
.

1. Compute the values of π(20), π(40), and π(80) (by listing out the primes).

2. Let n ∈ N. If p is a prime with n < p ≤ 2n, then explain why p must divide

(
2n
n

)
.

(Look at the numerator and denominator of the formula for

(
2n
n

)
.)

3. From the previous part, we know that
∏

n<p≤2n

p |
(

2n
n

)
(where the p’s are primes). Give

the justification for each steps below (each step follows from definitions, previous parts, or
from facts earlier in the term):

(1) nπ(2n)−π(n) =
∏

n<p≤2n

n

(2) ≤
∏

n<p≤2n

p

(3) ≤
(

2n
n

)

(4) < 22n.

Thus, nπ(2n)−π(n) < 22n which implies (by algebraic manipulations) that
π(2n)− π(n) < (2n) ln(2)/ ln(n) < 1.3863n

ln(n)
. This tells us that the number of primes between

n and 2n must be less than 1.3863n/ ln(n).

4. Verify this fact for n = 40, that is compute π(80) − π(40) and 1.3863 n
ln(n)

at n = 40 (is the

correct one bigger).

5. What does the formula tell you about the number of primes between 1, 000, 000 and 2, 000, 000?



II (Introduction to Number-Theoretic Functions) This problem will introduce three of the most
fundamental functions in number theory. Define the functions τ , σ and φ from N to N by:

τ(n) = the number of divisors of n =
∑

d|n 1

σ(n) = the sum of the divisors of n =
∑

d|n d

φ(n) = the number of positive integers less than, and relatively prime to, n

As an example for the number 12, these functions evaluate to

τ(12) = 6 (there are 6 divisors of 12 namely 1, 2, 3, 4, 6, 12)
σ(12) = 28 (the sum of the divisors of 12 is 1+2+3+4+6+12)
φ(12) = 4 (the numbers a=1, 5, 7, 11 are the only numbers less than 12 such that gcd(a, 12) = 1.)

All three of these functions are multiplicative meaning that f(ab) = f(a)f(b) when gcd(a, b) = 1
(we will not prove this). Thus, if we can factor n, then we can compute f(n) by first computing
the value for each prime factor.

1. The formula for prime powers, pe, for each function is (these formulas only work when p is a
prime and e is a positive integer):

τ(pe) = e + 1, σ(pe) =
pe+1 − 1

p− 1
, φ(pe) = pe − pe−1.

Verify these formula by computing τ(n), σ(n) and φ(n) for n = 3, n = 32 and n = 33. (That
is, compute the values using the definition (i.e. listing out the divisors and the numbers
relatively prime to n) and then compute the values with the formula and to see that you get
the same thing).

2. Since the functions are multiplicative, if n =
∏k

i=1 pei
i is the prime factorization of n, then

τ(n) =
∏k

i=1 τ(pei
i ), σ(n) =

∏k
i=1 σ(pei

i ), and φ(n) =
∏k

i=1 φ(pei
i ).

Use this to compute τ(n), σ(n) and φ(n) for n = 500 = 2253 (that is compute the values for
22 and then for 53 and multiply to get the answers).

3. How many divisors does n = 34650 have?
What are the sum of the divisors of n = 8128 (this is a perfect number, you can read about
them in the next problem part (d))?
How many positive integers are less than 980 and relatively prime to 980?



III (Discussion of Two Unsolved Problems) This problem will introduce two unsolved problems from
number theory.

1. (Twin primes) If p and p + 2 are primes, then they are called twin primes. An unsolved
problem is the following: Are there infinitely many twin primes? Here are a couple tamer
questions:

(a) Find the first 5 twin primes.

(b) Prove that if p and p+2 are twin primes and p > 3, then 12 divides their sum, p+(p+2).
(Hint: Think about the possible remainders when a prime, q > 3, is divided by 6.).

2. (Goldbach’s Conjecture) An unsolved problem is the following:

Is every even number, m = 2n > 2, the sum of two primes? Here are a few that have been
solved.

(a) Find all the ways to write 40 as the sum of two primes.

(b) Explain why Goldbach’s Conjecture is equivalent to the conjecture:
Every positive integer, n > 1, is the average of two primes?

3. (Fermat’s Last Theorem) If n is an integer bigger than 2, then there are no positive integers
a, b and c that satisfy the equation an + bn = cn. Fermat wrote that he had a short proof
for this in 1637, but never gave his proof. It went on to be a great unsolved problem until
Andrew Wiles gave a proof, to quite a bit of fanfare, in 1993 (with final corrected paper in
1995).

(a) For n = 2, solutions to this equation are called Pythagorean Triples. Give two triples
of positive numbers a, b and c such that a2 + b2 = c2. (Fermat’s Theorem says this is
impossible for n > 2.)

(b) Prove that if x, y, z, n ∈ N with xn + yn = zn and gcd(x, y) = d, then gcd(x, z) = d.
(From this we can say that from any solution where gcd(x, y) = d we can get a so-called
‘primitive solution’, namely a = x/d, b = y/d and c = z/d, so that gcd(a, b) = 1,
gcd(b, c) = 1 and gcd(a, c) = 1).



IV (Discussion of Two More Unsolved Problems) Here are two more unsolved problems

1. (One more than a Square) An unsolved problem is the following: Are there infinitely many
primes of the form n2 + 1 for some integer n? Try solving these instead.

(a) Find the first 5 such primes.

(b) Prove that if n2 + 1 is an odd prime, then n must be even. (Try the contrapositive)

2. (Perfect numbers) A perfect number is a positive integer such that the sum of its proper
divisors (divisors not including n) equals itself (that is, σ(n)− n = n or simply σ(n) = 2n).
For example, the divisors of 6 are 1, 2, 3, and 6 and the sum of the proper divisors is
1+2+3=6. These numbers held mystical/religious importance to the ancient Greeks. An
unsolved problem is the following: Are there any odd perfect numbers? Here is a couple
related problems:

(a) The number 6 is the smallest perfect number. Find the next smallest perfect number.
(You won’t have to go past 30. To find the third smallest would take longer unless you
used part (b)).

(b) By listing and summing the divisors, prove if 2n − 1 is a prime number for some n ∈ N,
then m = 2n−1(2n − 1) is a perfect number.

Hint 1: If it helps try listing, organizing and summing the divisors for 6 = 21(22 − 1),
then do the same for the example you found in part (a). Then see if you can find a
general reason that all the proper divisors of 2n−1(2n − 1) sum to 2n−1(2n − 1).

Hint 2: You will likely want to use the geometric series at some point. If you are
unfamiliar with this series or if you have forgotten it, the geometric series is given by

m∑

k=0

qk =
1− qm+1

1− q
,

so in particular, 1 + 2 + 4 + · · ·+ 2m = 1−2m+1

1−2
= −(1− 2m+1) = 2m+1 − 1.

Aside: It was conjectured by Euclid that all perfect numbers are of this form and it is
still unknown if he is right. It is known that all even perfect numbers are of this form,
but it is not known if there are any odd perfect numbers. If you could just find one
example of an odd perfect number you would answer this questions and become famous,
in the mathematical community.


