Practice Finding Planes and Lines in R³

Here are several main types of problems you find in 12.5 and old exams pertaining to finding lines and planes:

LINES

- 1. Find an equation for the line that goes through the two points A(1, 0, -2) and B(4, -2, 3).
- 2. Find an equation for the line that is parallel to the line x = 3 t, y = 6t, z = 7t + 2 and goes through the point P(0, 1, 2).
- 3. Find an equation for the line that is orthogonal to the plane 3x y + 2z = 10 and goes through the point P(1, 4, -2).
- 4. Find an equation for the line of intersection of the plane 5x + y + z = 4 and 10x + y z = 6.

PLANES

- 1. Find the equation of the plane that goes through the three points A(0,3,4), B(1,2,0), and C(-1,6,4).
- 2. Find the equation of the plane that is orthogonal to the line x = 4 + t, y = 1 2t, z = 8t and goes through the point P(3, 2, 1).
- 3. Find the equation of the plane that is parallel to the plane 5x 3y + 2z = 6 and goes through the point P(4, -1, 2).
- 4. Find the equation of the plane that contains the intersecting lines $x = 4 + t_1$, $y = 2t_1$, $z = 1 3t_1$ and $x = 4 - 3t_2$, $y = 3t_2$, $z = 1 + 2t_2$.
- 5. Find the equation of the plane that is orthogonal to the plane 3x + 2y z = 4 and goes through the points P(1, 2, 4) and Q(-1, 3, 2).

LINES/PLANES/SPHERES AND INTERSECTIONS:

- 1. Find the intersection of the line x = 3t, y = 1 + 2t, z = 2 t and the plane 2x + 3y z = 4.
- 2. Find the intersection of the two lines $x = 1 + 2t_1$, $y = 3t_1$, $z = 5t_1$ and $x = 6 t_2$, $y = 2 + 4t_2$, $z = 3 + 7t_2$ (or explain why they don't intersect).
- 3. Find the intersection of the line x = 2t, y = 3t, z = -2t and the sphere $x^2 + y^2 + z^2 = 16$.
- 4. Find the intersection of the plane 3y + z = 0 and the sphere $x^2 + y^2 + z^2 = 4$.

LINES (Solutions)

- 1. (a) A position vector: $\mathbf{r}_0 = \langle 1, 0, -2 \rangle$
 - (b) A direction vector: $\mathbf{v} = \langle 4 1, -2 0, 3 (-2) \rangle = \langle 3, -2, 5 \rangle$
 - (c) Equation: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ which gives x = 1 + 3t, y = 0 2t, z = -2 + 5t.
- 2. (a) A position vector: $\mathbf{r}_0 = \langle 0, 1, 2 \rangle$
 - (b) A direction vector: $\mathbf{v} = \langle -1, 6, 7 \rangle$ (Parallel to the other line, so we can use the same direction vector).
 - (c) Equation: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ which gives x = 0 t, y = 1 + 6t, z = 2 + 7t.
- 3. (a) A position vector: $\mathbf{r}_0 = \langle 1, 4, -2 \rangle$
 - (b) A direction vector: $\mathbf{v} = \langle 3, -1, 2 \rangle$ (Orthogonal to the plane, so we can use the normal from the plane).
 - (c) Equation: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ which gives x = 1 + 3t, y = 4 t, z = -2 + 2t.
- 4. Solution Method 1: Find two points of intersection. There are many point we just need to find two.
 - (a) First let's combine and simplify. Adding the equations gives 15x + 2y = 10
 - (b) Pick some numbers.
 - If x = 0, then we get 2y = 10, so y = 5. And going back to the original equations and plugging in (to either one) we get 0 + 5 + z = 4, so z = -1. Hence, (0, 5, -1) is a point on the line we desire.
 - If y = 0, then we get 15x = 10, so x = 2/3. And going back to the original equation we get 5(2/3) + 0 + z = 4, so z = 4 10/3 = 2/3. Thus another point is (2/3, 0, 2/3).

You can check that these points work in both equations. Now we can use the standard line method.

- (c) A position vector: $\mathbf{r}_0 = \langle 0, 5, -1 \rangle$
- (d) A direction vector: $\mathbf{v} = \langle 2/3 0, 0 5, 2/3 (-1) \rangle = \langle 2/3, -5, 5/3 \rangle.$
- (e) Equation: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ which gives x = 0 + 2/3t, y = 5 5t, z = -1 + 5/3t.

Solution Method 2: Find one point of intersection then use the cross-produce of the normal for the direction.

- (a) For this method you still have to find one point of intersection. So for example (0, 5, -1) as we did above.
- (b) The cross product of the normals for each plane will give a vector that is parallel to the line (picture it). So this is another way to get a direction vector. That would give $(5, 1, 1) \times (10, 1, -1) = (-1 1, -(-5 10), 5 10) = (-2, 15, -5)$.
- (c) A position vector: $\mathbf{r}_0 = \langle 0, 5, -1 \rangle$
- (d) A direction vector: $\mathbf{v} = \langle -2, 15, -5 \rangle$. (Note this is parallel to the direction vector we got with method 1).
- (e) Equation: $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ which gives x = 0 2t, y = 5 + 15t, z = -1 5t. Remember you and your classmate may have different parameterizations and both be correct. But your direction vectors should be parallel.

PLANES (Solutions)

- 1. (a) A position vector: $\mathbf{r}_0 = \langle 0, 3, 4 \rangle$
 - (b) A normal vector: $\mathbf{AB} = \langle 1, -1, -4 \rangle$ and $\mathbf{AC} = \langle -1, 3, 0 \rangle$, so one normal vector is $\mathbf{n} = \langle 1, -1, -4 \rangle \times \langle -1, 3, 0 \rangle = \langle 12, 4, 2 \rangle$
 - (c) Equation: $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_0) = 0$ which gives 12(x 0) + 4(y 3) + 2(z 4) = 0, or more simply 12x + 4y + 2z 20 = 0.
- 2. (a) A position vector: $\mathbf{r}_0 = \langle 3, 2, 1 \rangle$
 - (b) A normal vector: $\mathbf{n} = \langle 1, -2, 8 \rangle$ (Orthogonal to the line, so the direction vector for the line is a normal to the plane).
 - (c) Equation: $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_0) = 0$ which gives (x 3) 2(y 2) + 8(z 1) = 0, or more simply x 2y + 8z 7 = 0.
- 3. (a) A position vector: $\mathbf{r}_0 = \langle 4, -1, 2 \rangle$
 - (b) A normal vector: $\mathbf{n} = \langle 5, -3, 2 \rangle$ (Parallel to the other plane, so same normal works).
 - (c) Equation: $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_0) = 0$ which gives 5(x 4) 3(y + 1) + 2(z 2) = 0, or more simply 5x 3y + 2z 27 = 0.
- 4. Note that the lines intersect at $t_1 = 0$ and $t_2 = 0$, which gives the point P(4, 0, 1). We can quickly find three points by also plugging in $t_1 = 1$ and $t_2 = 1$ which gives Q(5, 2, -2) and R(1, 3, 3). So we have three points. Note also that $\mathbf{PQ} = \langle 1, 2, -3 \rangle$ and $\mathbf{PR} = \langle -3, 3, 2 \rangle$ (so I really didn't have to find Q and R I could have just grabbed the direction vectors from the lines).
 - (a) A position vector: $\mathbf{r}_0 = \langle 4, 0, 1 \rangle$
 - (b) A normal vector: $\mathbf{n} = \langle 1, 2, -3 \rangle \times \langle -3, 3, 2 \rangle = \langle 13, 7, 9 \rangle$.
 - (c) Equation: $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_0) = 0$ which gives 13(x 4) + 7(y + 0) + 9(z 1) = 0, or more simply 13x + 7y + 9z 61 = 0.
- 5. You have two vectors parallel to the plane. One is $\mathbf{PQ} = \langle -2, 1, -2 \rangle$ and the other is the normal from the given plane which is $\langle 3, 2, -1 \rangle$.
 - (a) A position vector: $\mathbf{r}_0 = \langle 1, 2, 4 \rangle$
 - (b) A normal vector: $\mathbf{n} = \langle -2, 1, -2 \rangle \times \langle 3, 2, -1 \rangle = \langle 3, -8, -7 \rangle$.
 - (c) Equation: $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_0) = 0$ which gives 3(x 1) 8(y 2) 7(z 4) = 0, or more simply 3x 8y 7z + 41 = 0.

LINES/PLANES/SPHERES AND INTERSECTIONS (Solutions):

- 1. (a) Combine and find t: 2(3t) + 3(1+2t) (2-t) = 4 gives 6t + 3 + 6t 2 + t = 4, so 13t = 3 and t = 3/13.
 - (b) Get the point: Thus, x = 9/13, y = 1 + 6/13 = 19/13, and z = 2 3/13 = 23/13.
- 2. (a) Combine and find t_1 and t_2 :
 - i. $1 + 2t_1 = 6 t_2$ implies that $t_2 = 5 2t_1$.
 - ii. $3t_1 = 2 + 4t_2$ combined with the fact just obtained gives $3t_1 = 2 + 4(5 2t_1)$ which gives $3t_1 = 22 8t_1$, so $11t_1 = 22$ Hence, $t_1 = 2$ and going back, we also get $t_2 = 1$. Thus, the only parameters that simultaneously work to equate x and y are $t_1 = 2$ and $t_2 = 1$. Now we check the third equation.
 - iii. $5t_1 = 3 + 7t_2$. Plugging in $t_1 = 2$ and $t_2 = 1$ we get 10 = 3 + 7, it works!
 - (b) Get the point: Thus, x = 5, y = 6, and z = 10 is the point where the two lines intersect.
- 3. (a) Combine and find t: $(2t)^2 + (3t)^2 + (-2t)^2 = 16$ gives $4t^2 + 9t^2 + 4t^2 = 16$, so $17t^2 = 16$ and $t = \pm \sqrt{16/17} = \pm 4/\sqrt{17}$.
 - (b) Get the points: Thus, the two points of intersection are $(8/\sqrt{17}, 12/\sqrt{17}, -8/\sqrt{17})$ and $(-8/\sqrt{17}, -12/\sqrt{17}, 8/\sqrt{17})$.
- 4. (a) Combine Since z = -3y we get $x^2 + y^2 + (-3y)^2 = 4$ which gives $x^2 + 10y^2 = 4$.
 - (b) What is this: So every point that satisfies $x^2+10y^2 = 4$ with z = -3y is a point of intersection. That is really the best we can do. (In terms of looking from above, meaning the projection onto the xy-plane, $x^2 + 10y^2 = 4$ would look like an ellipse. Also, z = -3y is a plane through the origin and if you visualize the intersection you will see that it is just a great circle of the sphere). In any case, the point is that the intersection of two surfaces is typically a curve in two dimensions, not just a point.