Exam 2 Facts

Slopes on Surfaces.

Be able to find and graph the domain	Know the basics on level curves/contour maps
$f_{x}(x, y)=\frac{\partial z}{\partial x}=$ slope in x-direction	$f_{y}(x, y)=\frac{\partial z}{\partial y}=$ slope in y-direction
$z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$	Tangent plane/linearization.
$f_{x x}(x, y)=\frac{\partial^{2} z}{\partial x^{2}}=$ concavity in x-direction	$f_{y y}(x, y)=\frac{\partial^{2} z}{\partial y^{2}}=$ concavity in y-direction
$f_{x y}(x, y)=\frac{\partial^{2} z}{\partial y \partial x}=$ mixed second partial	$f_{x y}(x, y)=f_{y x}(x, y)$ (Clairaut's Theorem)
$D=f_{x x} \cdot f_{y y}-\left(f_{x y}\right)^{2}=$ measure of concavity	$D<0$ means concavity changes (saddle)
$D>0, f_{x x}>0$ means concave up all directions	$D>0, f_{x x}<0$ means concave down all directions

Comments:

- To find critical points: Find f_{x} and f_{y}, set them BOTH equal to zero, then COMBINE the equations and solve for x and y.
- To classify critical points: Find $f_{x x}, f_{y y}$, and $f_{x y}$. At each critical point compute $f_{x x}, f_{y y}, f_{x y}$ and D and make appropriate conclusions from the second derivative test.
- To find absolute max/min on a region: Find critical points inside the region. Then, over each boundary, substitution the $x y$-equation for the boundary into the surface to get a one variable function. Find the absolue max/min of the one variable function over each boundary. In the end, evaluate $f(x, y)$ at all the critical points inside the region and the critical numbers and endpoints (corners) on each boundary to find the largest and smallest output.

Volumes: $\iint_{D} f(x, y) d A=$ signed volume 'above' the $x y$-axis, 'below' $f(x, y)$ and inside the region D.
We also saw $\iint_{D} 1 d A=$ area of D.
To set up a double integral:
(1) Solve for integrand $(z=f(x, y))$.
(2) Draw given $x y$-equations in the $x y$-plane (label intersections).
(3) Draw $x y$-equations that occur from surface intersections.
(4) Set up the double integral(s) using the region for D.

Options for set up:

$\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x$,	$y=g(x)=$ bottom,	$y=h(x)=$ top
$\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{p(y)}^{q(y)} f(x, y) d x d y$,	$x=p(y)=$ left,	$x=q(y)=$ right
$\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{w(\theta)}^{v(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta$,	$r=w(\theta)=$ inner,	$r=v(\theta)=$ outer

Center of Mass Application: If $\rho(x, y)=$ formula for density at a point in the region D, then

$$
M=\text { total mass }=\iint_{D} \rho(x, y) d A \quad, \quad \bar{x}=\frac{\iint_{D} x \rho(x, y) d A}{\iint_{D} \rho(x, y) d A} \quad \text { and } \quad \bar{y}=\frac{\iint_{D} y \rho(x, y) d A}{\iint_{D} \rho(x, y) d A}
$$

