Exam 1 Review Overheads

Exam 1 details:

- 4 pages of questions
- ONLY the Ti-30x IIS Calculator model is allowed (you will want this!)
- Allowed one hand-written 8.5 by 11 inch page of notes (double-sided)
- You must show your work on all problems.
- Covers 12.1-12.6, 13.1-13.4. You should know all the facts and concepts covered in lecture and in homework for those sections.
- You have 50 minutes to complete the exam.

Studying Advice:

- Spend 15-30 minutes reviewing all homework.
- Spend 15-30 minutes flipping through several old exams.
- Spend several hours working through several old exams in detail.
- Practice managing your time, never spend more than 10 minutes on a page!

Exam 1 Basic Facts

1. Vector Operations: Sums, scalar multiples, dot products, cross products.
2. Vector Facts: checking orthogonality, checking parallel, angle between, area of parallelogram/triangle, projections.
3. Finding Line and Plane Equations.
4. Knowing basics of traces and knowing the 7 basic shapes and their names.
5. Working with Parametric Equations in \mathbf{R}^{3} :

Tangent vector, unit tangent, tangent line, unit normal, arc length, curvature, velocity, acceleration.

Basic Vector Facts:

1. $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$.
$2 . \mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$.
2. $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos (\theta)$.
3. $\mathbf{u} \cdot \mathbf{v}=0$ means orthogonal.
4. $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin (\theta)$.
5. $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}.
6. $|\mathbf{u} \times \mathbf{v}|=$ parallelogram area.
7. $\operatorname{comp}_{\mathbf{a}}(\mathbf{b})=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$.
8. $\operatorname{proj}_{\mathbf{a}}(\mathbf{b})=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}$.

Basic Lines, Planes and Surfaces:

1. Lines: $x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t$ $\left(x_{0}, y_{0}, z_{0}\right)=$ a point on the line $\langle a, b, c\rangle=$ a direction vector
2. Planes: $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ $\left(x_{0}, y_{0}, z_{0}\right)=$ a point on the plane $\langle a, b, c\rangle=$ a normal vector
3. Cylinder: One variable 'missing' (Assume a, b, c positive below)
4. Elliptical/Circular Paraboloid: $z=a x^{2}+b y^{2}$
5. Hyperbolic Paraboloid: $z=a x^{2}-b y^{2}$.
6. Ellipsoid/Sphere: $a x^{2}+b y^{2}+c z^{2}=1$.
7. Elliptical/Circular Cone: $z^{2}=a x^{2}+b y^{2}$.
8. Hyperboloid of One Sheet: $a x^{2}+b y^{2}-c z^{2}=1$.
9. Hyperboloid of Two Sheets: $a x^{2}+b y^{2}-c z^{2}=-1$.

Basic Parametric in R^{3} :

1. $\mathbf{r}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$.
2. $\mathbf{r}^{\prime \prime}(t)=\left\langle\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}, \frac{d^{2} z}{d t^{2}}\right\rangle$.
3. $\int \mathbf{r}(t) d t=\left\langle\int x(t) d t, \int y(t) d t, \int z(t) d t\right\rangle$.
4. $\mathbf{r}^{\prime}(t)=\mathbf{v}(t)=$ velocity vector
5. $\left|\mathbf{r}^{\prime}(t)\right|=|\mathbf{v}(t)|=$ speed
6. $\mathbf{T}(t)=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{r}^{\prime}(t)$.
7. $\mathbf{r}^{\prime \prime}(t)=\mathbf{a}(t)=$ acceleration
8. $\mathbf{N}(t)=\frac{1}{\left|\mathbf{T}^{\prime}(t)\right|} \mathbf{T}^{\prime}(t)=$ principal unit normal

$$
\text { 12. } a_{T}=\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

6. $s=$ Arc Length $=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t$.
7. $a_{N}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$
