### 12.5 Summary

Lines:

$$
\begin{aligned}
& x=x_{0}+a t, \\
& y=y_{0}+b t, \\
& z=z_{0}+c t
\end{aligned}
$$

$$
v=\langle a, b, c\rangle \quad=\text { direction vector }
$$

$$
\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\text { a position vector }
$$

## To find equations for a line

## Info given?

## Find two points

$\vec{v}=\overrightarrow{A B}$
(subtract

$$
\overrightarrow{r_{0}}=\vec{A}
$$

Planes:

$$
\begin{aligned}
& \quad \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{b}\left(\mathrm{y}-\mathrm{y}_{0}\right)+\mathrm{c}\left(\mathrm{z}-\mathrm{z}_{0}\right)=0 \\
& \boldsymbol{n}=\langle a, b, c\rangle=\quad \text { a normal vector } . \\
& \boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\quad \text { a position vector }
\end{aligned}
$$

## To find the equation for a plane

## Info given?

## Find three points

## Done.

$$
\begin{aligned}
& \text { Two vectors parallel to the plane: } \\
& \frac{A B}{A B} \text { and } \overrightarrow{A C}
\end{aligned}
$$

$$
\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C} \quad \overrightarrow{r_{0}}=\vec{A}
$$

