12.5 Summary

Lines:

 $x = x_0 + at,$ $y = y_0 + bt,$ $z = z_0 + ct$

 $\boldsymbol{v} = \langle a, b, c \rangle$ = direction vector $\boldsymbol{r_0} = \langle x_0, y_0, z_0 \rangle$ = a position vector

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

 $n = \langle a, b, c \rangle = a$ normal vector. $r_0 = \langle x_0, y_0, z_0 \rangle = a$ position vector

