1. (12 pts)

VEIZSION B: ELLIPTIC PANADOLOID

(a) (3 pts) Consider $x^2 - 4y^2 - z = -9$.

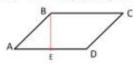
Name:

PARABOLAS

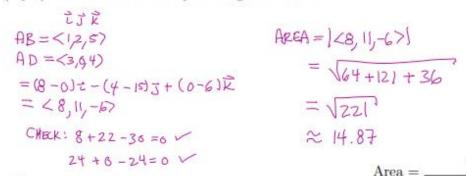
- Give the 2D name of the traces when x = k is fixed.
- Give the precise name of the 3D shape given by $x^2 4y^2 z = -9$

Name: HYPERBOLIC PARABOLOID

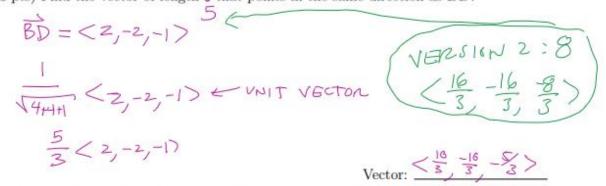
(b) Consider the parallelogram show with A(1,1,2), B(2,3,7), C(5,3,11), D(4,1,6).



i. (4 pts) Find the area of the parallelogram ABCD.



ii. (3 pts) Find the vector of length 3 that points in the same direction as \overrightarrow{BD} .



iii. (2 pts) The line segment BE (shown) is perpendicular to the segment AD. Find the length of the segment AE.

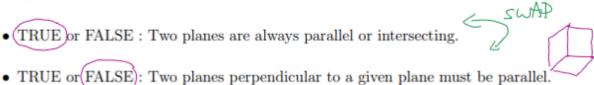
$$|AE| = Comp_{\overrightarrow{AD}} \overrightarrow{AB} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{|\overrightarrow{AD}|} = \frac{3+6+26}{\sqrt{9+0+6}} = \frac{23}{5}$$

Length =
$$|AE|$$
 = $\frac{23}{5}$

- (14 pts)
 - (a) (2 pts) True or false, circle one for each statement:

VERSION B

TRUE or FALSE: Two planes are always parallel or intersecting



- (b) (6 pts) Consider the line that contains the point (5,0,0) and is orthogonal to the plane 3y-4z=10. Find the two points of intersection of this line with the paraboloid $20x=y^2+z^2$. (First find parametric equations for the line!)

$$x = 5 + 0t$$

 $y = 0 + 3t$
 $z = 0 - 4t$

INTERSECTION:

$$20(5) = (3t)^{2} + (-4t)^{2}$$

$$160 = 9t^{2} + |6t^{2}|$$

$$160 = 25t^{2}$$

$$t^{2} = 4$$

$$t=\pm 2$$
 $(S_{1}-6_{1}-8)$

Intersection Points:
$$(x, y, z) = \frac{(5, 6-8)(5-6, 8)}{(5, 6, 8)}$$

(c) (6 pts) Find an equation for the plane that passes through the point \(\(\hat{\rho}(0,0,2)\) and contains the line of intersection of the planes x + y - z = 1 and 2x + y - 3z = -1. And give the x-intercept of this new plane equation.

$$0 \times + y - z = 1 \quad 7 \quad \times + 2z = 2$$

$$2 \times + y - 3z = -1$$

$$2 \times + y - 3z = -1$$

$$3 \times + 2z = 2$$

$$4 \times + 2z = 2$$

$$3 \times + 2z = 2$$

$$4 \times$$

NGW WE HAVE 3 PTS! IT IS POSSIBLE TO FIND MANY OTHERS

$$\overrightarrow{AB} = \langle 6, 2, -1 \rangle$$

$$\overrightarrow{AB} = \langle 6, 2, -1 \rangle$$

$$\overrightarrow{AC} = \langle -2, 3, -2 \rangle$$

$$(.4 - -3) \overrightarrow{t} - (0 - 2) \overrightarrow{J} + (0 - 4) \overrightarrow{K} = \langle -1, 2, 4 \rangle$$

$$x-intercept \Rightarrow (?,G,o)$$

$$\Rightarrow -x + 0 + 4(0-2) = 0$$

 $-x - 8 = 0 \Rightarrow x = 8$

Plane Equation:
$$-\times +2 + 4 + (z-2) = 0$$

 x -intercept: $(x, y, z) = (8, 0, 0)$

(12 pts)

- (a) (6 pts) Find the angle of intersection of the curves: (Round final answer to the nearest degree)

 $Cos^{-1}\left(\frac{-1-2+26}{\sqrt{12}}\right)$

•
$$\mathbf{r}_1(t) = \langle t, 3 - t, t^4 \rangle$$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u^2 \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - 2, 10 - u \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - u, 2u - u \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - u, 2u - u \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - u, 2u - u, 2u - u \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - u, 2u - u, 2u - u, 2u - u \rangle$
• $\mathbf{r}_2(u) = \langle 2 - u, 2u - u, 2u - u, 2u - u, 2u - u \rangle$
• $\mathbf{$

CHECK:
$$f_A = (-1)_A = 1$$

$$\vec{r}_{2}'(u) = (-1, 2, -24)$$
 $\vec{r}_{2}'(3) = (-1, 2, -6)$

$$\cos\theta = \frac{\vec{\kappa} \cdot \vec{\nu}}{|\vec{\kappa}||\vec{\nu}|} = \frac{-1 - 2 + 24}{\sqrt{1 + 1 + 16}} \qquad \theta = \cos\left(\frac{z_1}{\sqrt{g}\sqrt{41}}\right)$$

$$\approx 39.37^{\circ}$$

$$\theta = \cos^{-1}\left(\frac{21}{\sqrt{8}\sqrt{41}}\right)$$

Angle =
$$39^{\circ}$$

(b) (6 pts) Let C be the curve of intersection of the surface $y = x^2$ and the surface z = 2xy. Parameterize this curve, then use the parameterization to give the arc length the curve from the point (0,0,0) to $(3,\frac{9}{2},18)$

$$x = t$$
 $(0,0) \Rightarrow t = 0$

$$y = \pm 2$$
 (3,9,18) => t=3

$$= \int_{0}^{2} \sqrt{\frac{1}{4}(4+4t^{2}+t^{4})} dt$$

$$= \frac{1}{2} \int_{0}^{3} \sqrt{(t^{2}+2t)^{3}} dt = \frac{1}{2} \int_{0}^{3} t^{2}+2t dt = \frac{1}{2} \left(\frac{1}{3}t^{3}+2t\right) \int_{0}^{3} dt$$

$$=\frac{1}{2}(9+6)=15/2$$

(a) (2 pts) True or false, circle one for each statement:

VERSION B

i. TRUE or FALSE : $\mathbf{r}'(t)$ and $\mathbf{N}(t)$ are always orthogonal.

- ii. TRUE or FALSE): $\mathbf{r}''(t)$ and $\mathbf{N}(t)$ are always parallel.
- (b) Consider $\mathbf{r}(t) = \langle t^2, 3t + 6, -2t^2 \rangle$.
 - i. (5 pts) Find the curvature at t = 0. (Give your answer as a decimal rounded to three digits)

$$\vec{r}'(t) = 22t, 3, -4t$$

$$\vec{r}''(t) = 22t, 3, -4t$$

$$\vec{r}''(t) = 22, 0, -4$$

$$\vec{r}''(t) =$$

$$\kappa(0) = 0.497$$

ii. (5 pts) Find the equation of the tangent line to r(t) at the point (4, 12, -8) and find where this line intersects the xz-plane