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(a) (3 pts) Consider 22 — 4y® — z = —9. e TS
PARAROLAS

e Give the 2D name of the traces when x = k is fixed. Name:

e Give the precise name of the 3D shape given by #° — 4y — z = =9

HyPeegolic PARARSLS 1D

Name:

(b) Consider the parallelogram show with A(1,1,2), B(2,3,7), C(5,3,11), D(4,1,6).
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i. (4 pts) Find the area of the parallelogram ABCD.
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il. (3'ptq) Find the vector of length & that points in the same direction as BD.
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Vector:

iii. (2 pts) The line segment BE (shown) is perpendicular to the segment AD. Find the
length of the segment AE.
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2. (14 pts)

(a) (2 pts) True or false, circle one for each statement: \J"Eﬂ-ﬂﬁﬁ E

<=
. FALSE : Two planes are always parallel or intersecting. P
e TRUE : Two planes perpendicular to a given plane must be parallel.

(b) (6 pts) Consider the line that contains the point (5,0,0) and is orthogonal to the plane
3y—4z = 10. Find the two points of intersection of this line with the paraboloid 20z = ?+ 22,
(First find parametric equations for the line!)
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Intersection Points: (r,y,z) = (Qf %’ —8) ~ ['S_,r#% QJ

(c) (6 pts) Find an equation for the plane that passes through the point}f0.0.2) and contains
the line of intersection of the planes z + y — 2z = 1 and 2r + y — 3z = —1. And give the
r-intercept of this new plane equation.
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3. (12 pts)

(a) (6 pts) Find the angle of intersection of the curves: (Ro nswer to the nearest degree)
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(b) (6 pts) Let C' be the curve of intersection of the surface y =5£;I'2 and the surface z =2ry.
Parameterize this curve, then use the parameterization to give the arc length the curve from

the point (0,0.0) to (3.9,18)
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4. (12 pts)
(a) (2 pts) True or false, circle one for each statement: N Ej}&[ §rd E

i.r FALSE : r/(t) and N(t) are always orthogonal.
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ii. TRUE or\FALSE): r"(t) and N(¢) are always parallel.

(b) Consider r(t) = (2,3t + 6, —2t%).

i. (5 pts) Find the curvature at ¢ = 0. (Give your answer as a decimal rounded to three

digits)
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ii. (5 pts) Find the equation of the tangent line to r(f) at the point (4,12, ~8) and find
where this line intersects the rz-plane
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