TEST PREP on 12.4 and 12.5- Dr. Loveless

Test Prep Reminder: These problems mostly come *directly* from the <u>Dr. Loveless old exam archive</u>. You can find solutions in that archive after class. Keep asking yourself, could I really do this on a test? How can I be more efficient? And how can I check my answers?

Remember after you do the first problem (first 5-10 minutes of class), then feel free to ask homework questions and/or continue to the next page. Make these quiz sections your own and work with your TA. Ask your TA questions, tell your TA what you need help with, have a vote on what to do as a class, work together!

12.5 Extra Help:

- Based on student questions over the years, I have created some materials to provide extra help on 12.5 lines and planes. This is an important section: it will be a big part of exam 1 and lines/planes are key tools for the rest of the term.
 - Review sheet of main line/plane concepts also includes additional examples on the intersection of two lines and intersection of two planes.
 - Visuals/Derivations for Lines/Planes know these visuals well.
 - Flowchart on how to approach finding equations for Lines/Planes
 - Practice sheet of finding lines/planes with solutions.

PARTICIPATION CODE: Don't forget to ask your TA for the participation code! Enter this on Canvas before the end of quiz section!

Spring 2018 - Exam 1 - Dr. Loveless (part (a) involves cross-products, part (b) is more dot products).

- 1(a). Find a vector that has length 7 and is orthogonal to both $\mathbf{u} = \langle 1, 0, 2 \rangle$ and $\mathbf{v} = \langle 3, -2, 1 \rangle$
- 1(b). Find the distance from point A to point B in the picture below (Hint: Use vector tools!)

Winter 2018 - Exam 1 - Taggart (on vector operations, you have some HW questions like this)

1. In this problem \mathbf{u} , \mathbf{v} , and \mathbf{w} are non-zero vectors in three-dimensions. Indicate whether each of the following expressions is a scalar (\mathbf{S}) , a vector (\mathbf{V}) , or nonsense (\mathbf{N}) .

expression

(circle one)

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$

S V N

$$(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$$

S V N

$$\frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{w}|}$$

S V N

$$\left(\frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{w}|}\right)\mathbf{w}$$

S V N

$$\operatorname{comp}_{\mathbf{w}}\left(\mathbf{u}-\mathbf{v}\right)$$

S V N

$$\frac{1}{|\mathbf{u}|}\mathbf{proj}_{\mathbf{w}}\left(\mathbf{v}\right)$$

S V N

Spring 2013 - Exam 1 - Dr. Loveless (finding plane and line equations which is from 12.5, you may not be ready for this yet, but come back to this as you do the 12.5~HW)

1(a). Consider the line through the points P(1,3,-2) and Q(3,5,7). Find the (x,y,z) coordinates of the point at which this line intersects the xz-plane.

- 1(b). Consider the **plane**, P, that contains the point (1, -1, 2) and is the orthogonal to the line given by $L: \begin{cases} x = -3t \\ y = 2 + 7t \\ z = 5 t \end{cases}$
 - (a) Find the equation for the plane, P.
 - (b) At what point (x, y, z) does this plane intersect the x-axis?