- 1. (14 pts) For ALL parts below, consider the plane, \mathcal{P} , through A(0,0,1), B(1,1,3), and C(-1,2,4).
 - (a) To the nearest degree, find the angle at A in the triangle BAC.

$$<1,1,2>-<-1,2,3>=\sqrt{1+1+1^2}\cdot\sqrt{1+4+4}\cdot\cos\theta$$
, $\theta=\cos^{-1}\left(\frac{7}{\sqrt{6}\sqrt{14}}\right)\approx 40^{\circ}$

(b) Find the (x, y, z) point where \mathcal{P} intersects the y-axis. (Hint: Find the equation for the plane).

Find the
$$(x, y, z)$$
 point where \mathcal{P} intersects the y-axis. (Hint: Find the equation for the plane).

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{1} & \overrightarrow{3} & \overrightarrow{2} \\ 1 & 2 & 3 \end{vmatrix} = (3 + 1) \cdot 7 - (3 - 2) \cdot 3 + (2 - 1) \cdot E$$

$$= (3 + 1) \cdot 7 - (3 - 2) \cdot 3 + (2 - 1) \cdot E$$

INTERSECTION WITH y-AXIS
$$\Rightarrow$$
 x=0 AND $z=0$
-0-Sy+3(0-1)=0 \Rightarrow -Sy-3=0 \Rightarrow y=-3/5

$$(0, -\frac{3}{5}, 0)$$

(c) A particle starts at the point (70,0,1) and moves toward the plane along a straight line that is orthogonal to the plane. At what point, (x, y, z), would this line intersect the plane?

LINE:
$$X = 70 - t$$

 $y = 0 - 5t$
 $z = 1 + 3t$

$$trotensect$$
 with plane
$$-(70-E)-5(-5E)+3(1+3E-1)=0$$

$$-70+E+25E+9E=0$$

$$35E=70$$
 $E=2$

$$(x,y,z) = (68,-10,7)$$

2. (1**2** pts)

- (a) Consider the surface containing all points that satisfy $x^2 + z^2 = 16 + y^2$.
 - i. Give the 2D names for the traces when the given variable is a constant k:
 - For x = k, the traces are: HYPEnBOLAS
 - For y = k, the traces are: CIRCLES
 - For h, the traces are. Hyper 130th
 - ii. Using the precise name from class, give the 3D name of this shape.

iii. A particle is traveling on the surface $x^2 + z^2 = 16 + y^2$ in such a way that y is negative, $x = 5\cos(t)$ and $z = 5\sin(t)$ and for all times t. Find the value, or formula, for the y-coordinate of the particle at all times t.

$$(5\cos(t))^{2} + (5\cos(t))^{2} + (5\cos(t))^{2} = 16 + y^{2}$$

$$25 = 16 + y^{2} = 10 + y^{2} = 9 = 100 + y^{2} = 10$$

- (b) Consider the curve given by the polar equation $r = 6\cos(\theta)$.
 - i. Convert to Cartesian coordinates, then draw a rough sketch of it in the xy-plane with several points labeled. (Hint: It is a shape you know well).

$$r = 6 \times r \Rightarrow r^{2} = 6 \times \Rightarrow \times^{2} + y^{2} = 0$$

$$\Rightarrow \times^{2} - 6 \times + y^{2} = 0$$

$$(5,2) \times^{2} - 6 \times + q + y^{2} = q$$

$$(x - 3)^{2} + y^{2} = q$$

$$(x - 3)^{2} + y^{2} = q$$

$$(3,0)$$

$$(3,0)$$

$$(3,-3)$$
or radius 3

ii. There are two Cartesian points on this graph where the tangent lines are horizontal. Find polar coordinates (r, θ) for these points. (Hint: You can use the graph.).

$$(3,3) \Rightarrow \theta = \sqrt{4} \Rightarrow r = 6 \cos(\sqrt{4}) = 6 \sqrt{2} = 3\sqrt{2}$$
 $(3,-3) \Rightarrow \theta = -\sqrt{4} \Rightarrow r = 3\sqrt{2}$
 $(7,0) = (3\sqrt{2}, \sqrt{4})$
on $(3\sqrt{2}, -\sqrt{4})$
on

3. (13 pts) For ALL parts on this page, two particles travel along curves given by

$$\mathbf{r}_1(t) = \langle 2t, 3t^2, 2t^3 \rangle$$
 and $\mathbf{r}_2(t) = \langle 2 - 2t, 3 + 3t, 2 - 6t \rangle$,

where t is time in seconds and distances are in feet,

(a) Find a vector that is tangent to $\mathbf{r}_1(t)$ at t=1 and has length 10.

$$F'(4) = (2,64,64^{\circ})$$

$$F'(1) = (2,64,64^{\circ})$$

$$|F'(1)| = \sqrt{2^{2}+6^{2}+6^{2}} = \sqrt{4+36+36} = \sqrt{46}$$

- (b) Consider $\mathbf{r}_2(t)$ which starts at (2,3,2).
 - i. Find and simplify the arc length function, $s = s(t) = \int_{a}^{t} |\mathbf{r}_{2}'(u)| du$.

$$S = \int_{0}^{t} \sqrt{(2)^{2} + (2)^{2} + (-6)^{2}} du = \int_{0}^{t} \sqrt{4 + 9 + 26} du = \int_{0}^{t} 7 du$$

$$\boxed{S = 7 + 1}$$

ii. The particle stops at the instant it has traveled 28 feet from its starting location. Give its (x, y, z) coordinates at this instant.

$$S = 28 \Rightarrow t = 4 \Rightarrow (x,y,z) = (2-2(4),3+3(4),2-6(4))$$

= $[(-6,15,-22)]$

(c) Find the (x, y, z) point(s) at which the **paths** of the two particles intersect. (This is NOT a collision question).

$$2t = 2-2u \Rightarrow t = 1-u$$

$$3t^{2} = 3+3u \Rightarrow t^{2} = 1+u$$

$$2t^{3} = 2-6u$$

$$u=0, t=1 \Rightarrow (x,y,z) = (2,3,2)$$

$$u=3, t=-2 \Rightarrow (x,y,z) = (-4,12,-16)$$

$$u=3, t=-2 \Rightarrow (x,y,z) = (-4,12,-16)$$

$$u=3, t=-2 \Rightarrow (x,y,z) = (-4,12,-16)$$

$$(1-u)^{2} = 1+u$$

$$1-2u+u^{2} = 1+u$$

$$u^{2}-3u = 0$$

$$u(u-3) = 0$$

$$u = 3$$

$$t = 1$$

- 4. (10 pts) NOTE: The two parts below are NOT related!
 - (a) Find all values of t at which the tangent line to the curve $x = 8 t^3$, $y = 42t 10t^2$ is orthogonal to the vector (2, -3).

$$F'(1) = (-3t^2, 42 - 20t) = a tangent vector at t.$$

WANT ORTHOGONAL TO (3,-3)

$$(2,-3) \cdot (-3t^2, 42-20t) = 0$$

 $-6t^2 - 126 + 60t = 0$
 $t^2 - 10t + 21 = 0$
 $(t-3)(t-7) = 0$
 $t = 3$ on $t = 7$

(b) A small bug is moving according to the vector function

$$\mathbf{r}(t) = \langle t \sin(\pi t), \ln(t), t^2 - 4e^{(2-2t)} \rangle.$$

At time t=1 the bug leaves the curve and follows the path of the tangent line. Find the (x,y,z) coordinates where the bug's tangent line path would intersect the xy-plane.

$$\vec{r}(0 = \langle 0,0,1-4 \rangle = \langle 0,0,-3 \rangle$$
 $\vec{r}'(t) = \langle sm(nt) + nt cos(nt), t, 2t + 8e^{(2-2t)} \rangle$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$
 $\vec{r}'(1) = \langle 0-\pi, 1, 2+8 \rangle = \langle -\pi, 1 \rangle = 0$

$$(x,y,z) = (-\frac{3\pi}{10},\frac{3}{10},0)$$