7.2: TRIG INTEGRALS SUMMARY

1. SINES AND COSINES

(a) If $\sin (x)$ or $\cos (x)$ is to an odd power.
i. Factor out a term from the odd power. Use the identity $\sin ^{2}(x)+\cos ^{2}(x)=1$.
ii. Do a substitution $(u=\sin (x)$ or $u=\cos (x)$ as appropriate $)$.
(b) If $\sin (x)$ and $\cos (x)$ both have even powers: Simplify with half-angle identities.

2. TANGENTS AND SECANTS

(a) If $\sec (x)$ has an even power.
i. Factor out $\sec ^{2}(x)$. Use the identity $\sec ^{2}(x)=\tan ^{2}(x)+1$.
ii. Do a substitution $(u=\tan (x))$.
(b) If $\tan (x)$ has an odd power (and at least one $\sec (x)$):
i. Factor out $\sec (x) \tan (x)$. Use the identity $\tan ^{2}(x)=\sec ^{2}(x)-1$.
ii. Do a substitution $(u=\sec (x))$.

Examples:

- Odd power on sine: Use $u=\cos (x)$.
$\int \sin ^{3}(x) \cos ^{2}(x) d x=\int \sin ^{2}(x) \cos ^{2}(x) \sin (x) d x=\int\left(1-\cos ^{2}(x)\right) \cos ^{2}(x) \sin (x) d x$.
- Odd power on cosine: Use $u=\sin (x)$.
$\int \sin ^{4}(x) \cos ^{3}(x) d x=\int \sin ^{4}(x) \cos ^{2}(x) \cos (x) d x=\int \sin ^{4}(x)\left(1-\sin ^{2}(x)\right) \cos (x) d x$.
- Only even powers: Integrate directly as follows:
$\int \sin ^{2}(x) d x=\int \frac{1}{2}(1-\cos (2 x)) d x$.
- Only even powers:
$\int \cos ^{4}(x) d x=\int\left(\cos ^{2}(x)\right)^{2} d x=\int\left(\frac{1}{2}(1+\cos (2 x))\right)^{2} d x=\frac{1}{4} \int 1+2 \cos (2 x)+\cos ^{2}(2 x) d x$.
Now use half-angle on $\cos ^{2}(2 x)=\frac{1}{2}(1+\cos (4 x))$, then integrate directly.
- Even power on secant: Use $u=\tan (x)$.
$\int \tan ^{2}(x) \sec ^{4}(x) d x=\int \tan ^{2}(x) \sec ^{2}(x) \sec ^{2}(x) d x=\int \tan ^{2}(x)\left(\tan ^{2}(x)+1\right) \sec ^{2}(x) d x$.
- Odd power on tangent: Use $u=\sec (x)$.
$\int \tan ^{3}(x) \sec ^{2}(x) d x=\int \tan ^{2}(x) \sec (x) \sec (x) \tan (x) d x=\int(\sec (x)-1) \sec (x) \sec (x) \tan (x) d x$.

3. NOTES

(a) For $\cot (x) / \csc (x)$ the cases would be nearly identical to $\tan (x) / \sec (x)$.
(b) If you are stuck, try changing everything to $\sin (x)$ and $\cos (x)$ (or changing everything to $\sec (x)$ and $\tan (x)$. If you are still stuck, look at all your trig identities and rewrite the integral in another way.
(c) And remember that we have added the following to our table of known integrals (use these, you don't have to derive them):
$\int \tan (x) d x=\ln |\sec (x)|+C$ (in 5.5)
$\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C$ (in 7.2)
$\int \sec ^{3}(x) d x=\frac{1}{2}(\sec (x) \tan (x)+\ln |\sec (x)+\tan (x)|)+C$ (in 7.2)

