

5.4 The Indefinite Integral and Net/Total Change

Net Change and Total Change

An object is moving on a straight line:

$s(t)$ = 'location at time t '

$v(t)$ = 'velocity at time t '

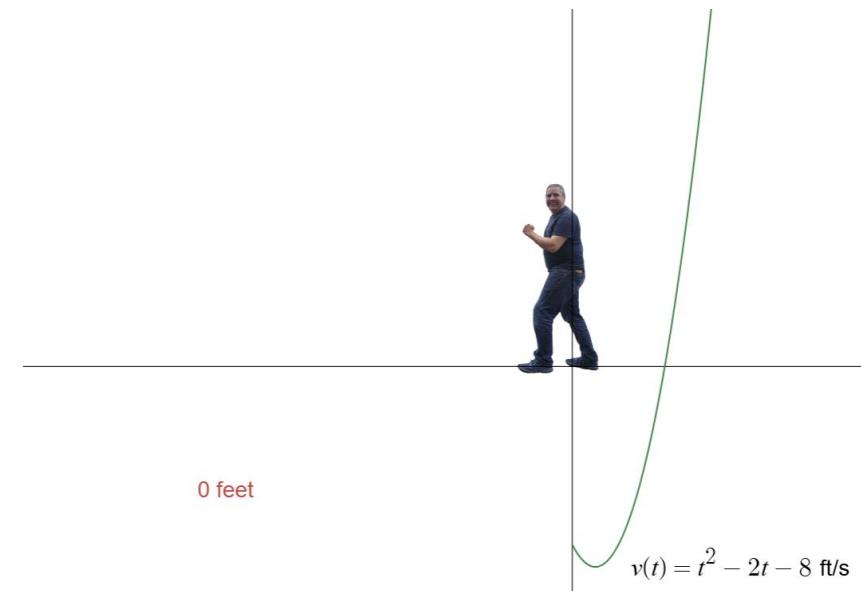
positive $v(t)$ means up/right

negative $v(t)$ means down/left

The FTOC (part 2) says

$$\int_a^b v(t)dt = s(b) - s(a)$$

We also call this the *displacement*.



Entry Task:

Let $v(t) = t^2 - 2t - 8$ ft/sec.

Compute displacement from $t = 0$ to $t = 6$.

We define **total change** in dist. by

$$\int_a^b |\nu(t)| dt$$

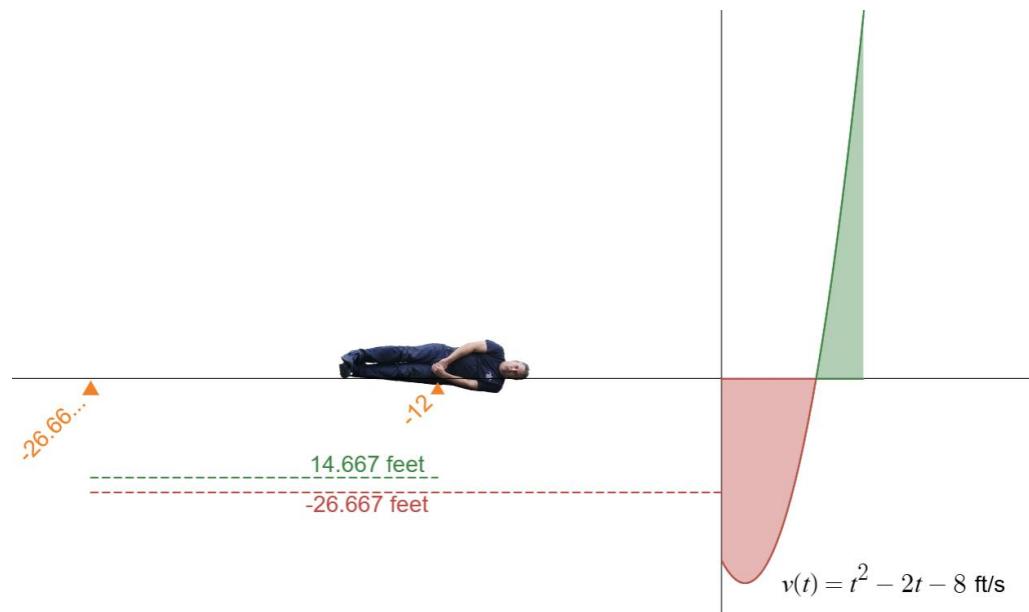
which we compute by

1. Solving $\nu(t) = 0$ for t .
2. Splitting up integral.
3. Adding together as positive numbers.

Example:

Let $\nu(t) = t^2 - 2t - 8$ ft/sec.

Compute the total distance traveled
from $t = 0$ to $t = 6$.



Visual: <https://www.desmos.com/calculator/d42lbkvcfh>

A brief pause to discuss integration methods.

Examples (by simplifying we **can** do these):

$$1. \int 6e^x + 4x - 5\sqrt{x} \, dx$$

$$2. \int \frac{\sqrt{x} - 3x}{x} \, dx$$

$$3. \int \frac{\cos(x)}{1 - \cos^2(x)} \, dx$$

We **cannot** do now, but **can later** in term:

$$\int xe^{3x} \, dx$$

$$\int x \sin(x^2) \, dx$$

$$\int \frac{3}{x - 2\sqrt{x}} \, dx$$

$$\int \cos^3(x) \, dx$$

$$\int \frac{x^2 - x + 6}{x^3 + 3x} \, dx$$

$$\int \frac{\sqrt{x^2 - 1}}{x^2} \, dx$$

We will “**never**” do:

$$\int e^{x^2} \, dx$$

$$\int \frac{1}{x + e^x} \, dx$$

$$\int \ln(x) \cos(x) \, dx$$

$$\int \sin(x^3) \, dx$$

5.5 The Substitution Rule

Example 1 - Warm Up:

- What is the derivative of $y = (1 + x^4)^{11}$?

- Can you guess the integral...

$$\int x^3(1 + x^4)^{11} dx$$

The Substitution Rule:

If we write $u = g(x)$ and $du = g'(x) dx$, then

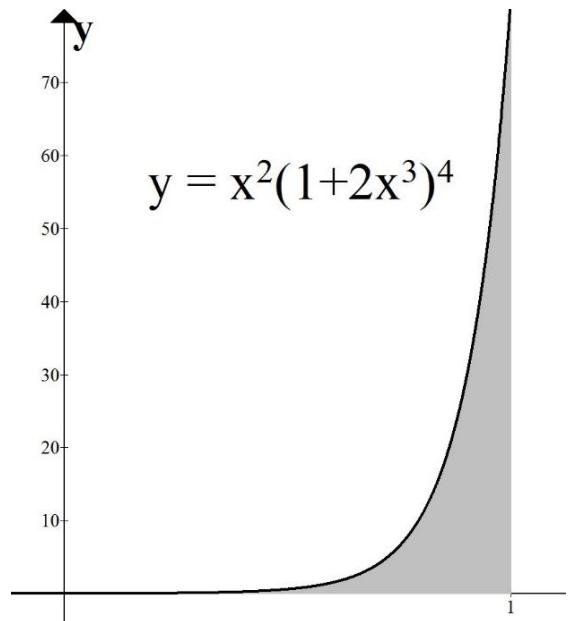
$$\int f(g(x))g'(x)dx = \int f(u)du$$

Observations:

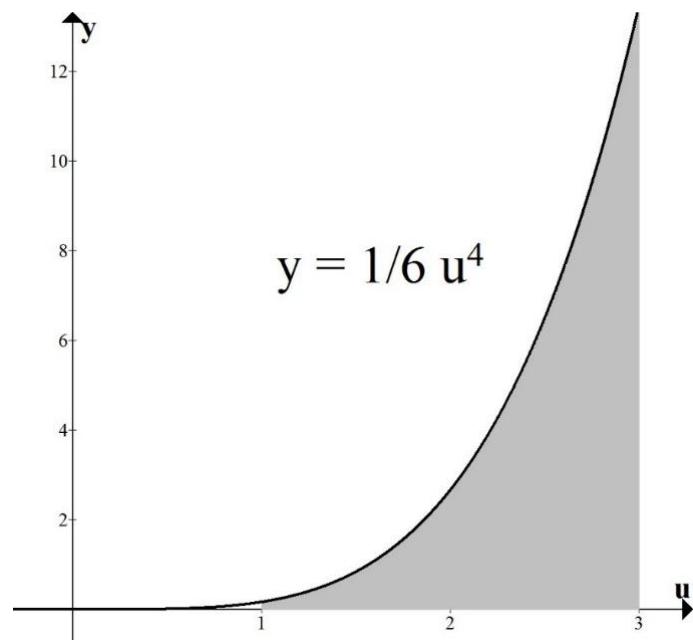
1. We are reversing the “chain rule”.
2. We must see:

“inside” = a function inside another
“outside” = derivative of inside

Here is a visual:



$$\int_0^1 x^2(1 + 2x^3)^4 dx$$



$$\int_1^3 \frac{1}{6} u^4 du$$

Let $u = 1 + 2x^3$.

Change *everything* in terms of u .

Aside: What is really happening
(you do not need to write this)

Recall:

$$\int_a^b f(g(x))g'(x)dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(g(x_i))g'(x_i)\Delta x$$

If we replace $u = g(x)$, then we are “transforming” the problem from one involving x and y to one with u and y .

This changes **everything** in the set up.

The lower bound, upper bound, widths, and integrand all change!

Recall from Math 124 that

$$g'(x) = \frac{du}{dx} \approx \frac{\Delta u}{\Delta x}$$

(with more accuracy when Δx is small)

Thus, we can say that

$$g'(x)\Delta x \approx \Delta u$$

In other words, if the width of the rectangles using x and y is Δx , then the width of the rectangles using u and y is $g'(x)\Delta x$.

And if we write $u_i = g(x_i)$, then

$$\begin{aligned} \int_a^b f(g(x))g'(x)dx &= \lim_{n \rightarrow \infty} \sum_{i=1}^n f(g(x_i))g'(x_i)\Delta x \\ &= \lim_{n \rightarrow \infty} \sum_{i=1}^n f(u_i)\Delta u \\ &= \int_{g(a)}^{g(b)} f(u)du \end{aligned}$$

Example 2:

$$\int_2^3 x^2 e^{x^3} dx$$

Advice on picking $u = ?$

Example 3: Try $u = \text{inside}$

$$\int x \cos(\sin(x^2)) \cos(x^2) dx$$

Example 4: Try $u = \text{denominator}$

$$\int_0^1 \frac{x}{x^2 + 3} dx$$

Example 5: *May need to simplify first*

$$\int \tan(x) \, dx$$

What to do when “old” variable remains

Example 6:

$$\int x^3 \sqrt{2 + x^2} \, dx$$

Example 7:

$$\int \frac{x^7}{x^4 + 1} \, dx$$