

Closing Tues: HW 4.9, 5.1

Closing Thur: HW 5.2, 5.3

4.9 Antiderivatives (continued)

Entry Task:

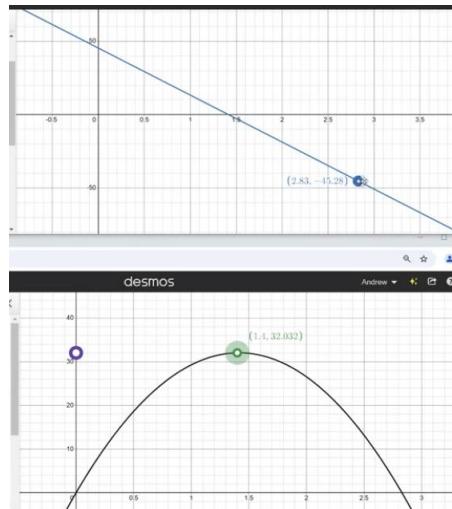
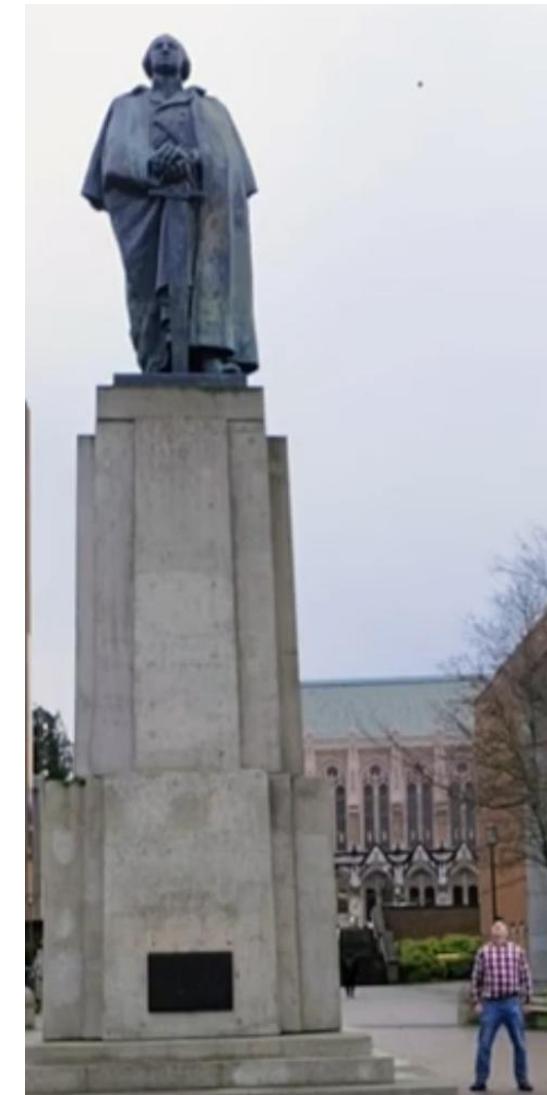
Assume gravity provides a downward acceleration of 32 ft/s^2 .

A ball thrown straight at $t = 0 \text{ sec}$ and returns to your hand at $t = 3 \text{ sec}$.

Find the height of the ball above your hand.

In other words, solve the initial value problem:

$$h''(t) = -32, h(0) = 0, h(3) = 0$$



Clip: <https://youtube.com/shorts/ijq3byvqLmc?feature=share>

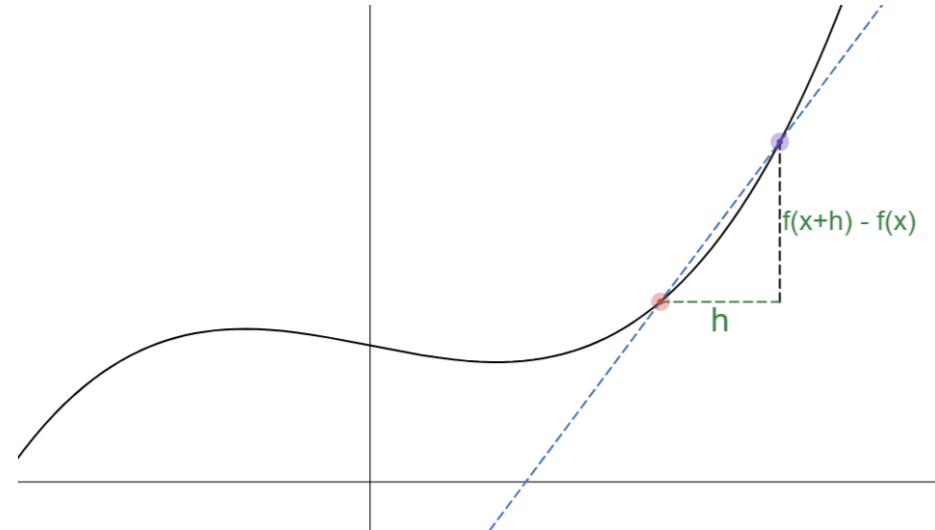
Details: <https://www.youtube.com/watch?v=07TDV5SgJT4>

5.1 Defining Area (Riemann sums)

Calculus is based on limiting processes that “approach” the exact answer to a rate question.

In Calculus I, you defined

$$\begin{aligned} f'(x) &= \text{'slope of the tangent at } x' \\ &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \end{aligned}$$



Desmos: <https://www.desmos.com/calculator/e11b1c2af2>

In Calculus II, we will see that antiderivatives are related to the area ‘under’ a graph

$$= \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$



Desmos: <https://www.desmos.com/calculator/n6ipinayos>

Riemann sums set up:

A procedure to get better and better approximations of the area “under” $f(x)$.

1. Break into n subintervals.

$$\Delta x = \frac{b-a}{n} \text{ and } x_i = a + i\Delta x$$

2. Draw n rectangles.

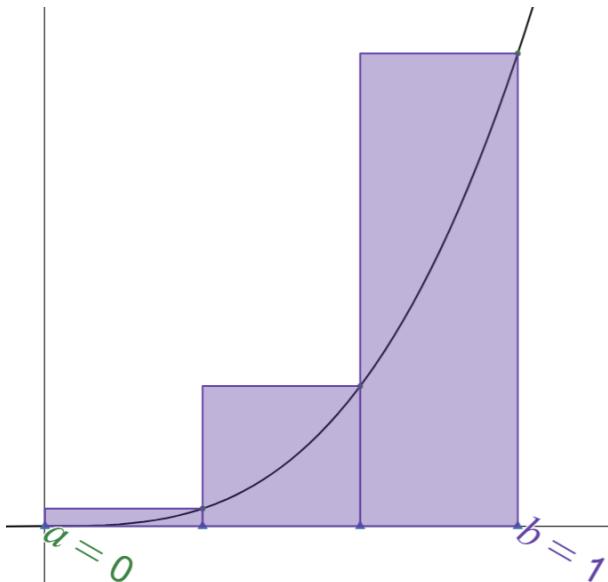
Area of each rectangle =

$$(\text{height})(\text{width}) = f(x_i^*)\Delta x$$

3. Add up rectangle areas.

Example:

Approx. the area under $f(x) = x^3$ from $x = 0$ to $x = 1$ using $n = 3$ subdivisions and *right-endpoints* to find the heights.



Desmos: <https://www.desmos.com/calculator/n6ipjngyos>

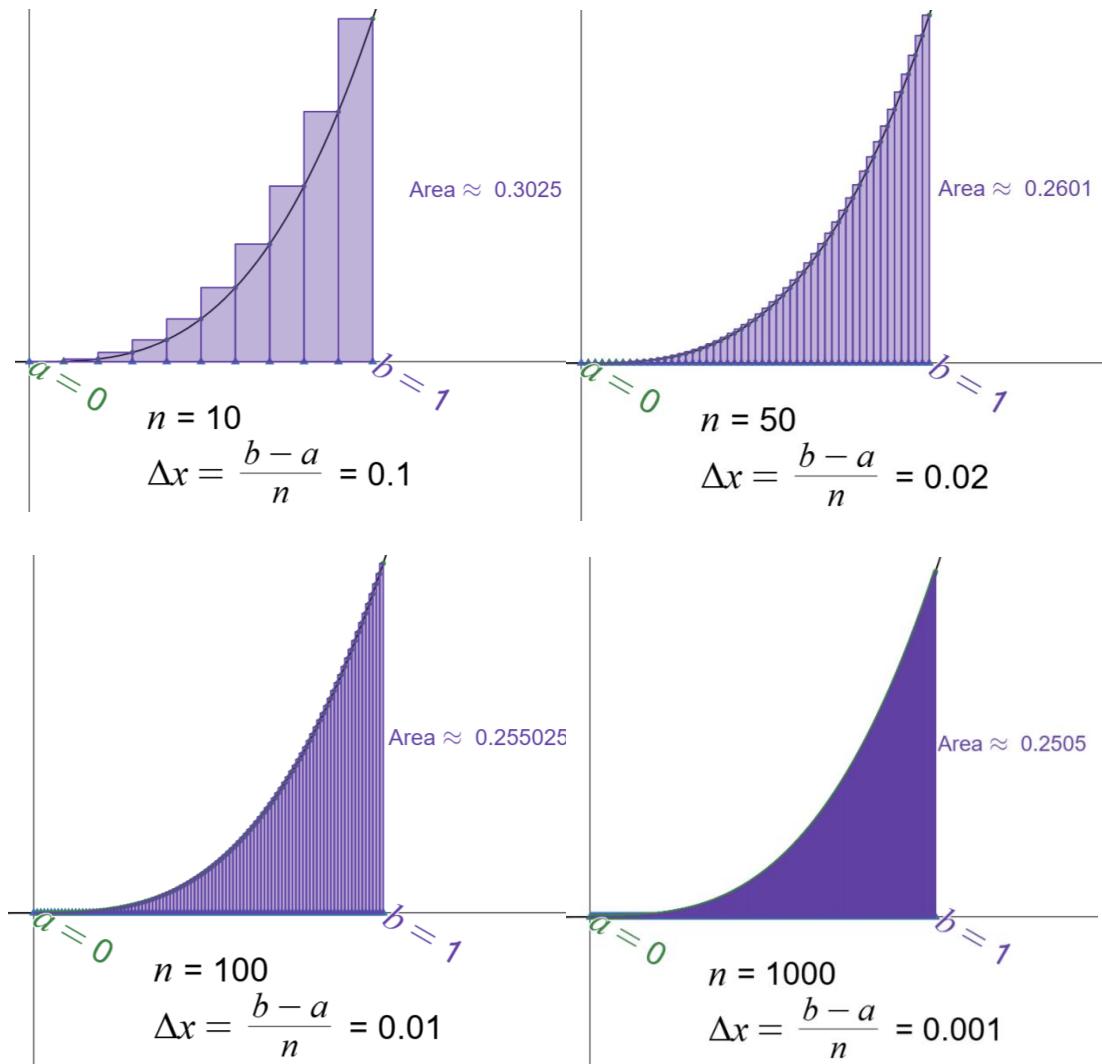
You try:

Approx. the area under $f(x) = x^3$ from $x = 0$ to $x = 1$ using $n = 4$ subdivisions and *right-endpoints* to find the heights.

I did this again with 100 subdivisions, then 1000, then 10000.

Here is a summary of my findings:

n	R_n	L_n
4	0.390625	0.140625
5	0.36	0.16
10	0.3025	0.2025
100	0.255025	0.245025
1000	0.25050025	0.24950025
10000	0.2499500025	0.2500500025



General Pattern: (right-endpoint)

For $f(x) = x^3$ on $x = 0$ to $x = 1$ with "n" subdivisions...

$$\Delta x = \frac{1-0}{n} = \frac{1}{n}, \quad x_i = 0 + i \frac{1}{n} = \frac{i}{n}$$

$$\text{Height} = f(x_i) = x_i^3 = \left(\frac{i}{n}\right)^3$$

$$\text{Area} = f(x_i)\Delta x = x_i^3 \Delta x = \left(\frac{i}{n}\right)^3 \frac{1}{n}$$

Adding up the rectangle areas

$$\text{Sum} = \sum_{i=1}^n x_i^3 \Delta x = \sum_{i=1}^n \left(\frac{i}{n}\right)^3 \frac{1}{n}$$

$$\text{Exact Area} = \lim_{n \rightarrow \infty} \sum_{i=1}^n \left(\frac{i}{n}\right)^3 \frac{1}{n}$$

Another Example:

Using sigma notation, write down the general Riemann sum definition of the area from $x = 5$ to $x = 7$ under

$$f(x) = 3x + \sqrt{x}$$

$$\Delta x = \frac{b - a}{n} =$$

$$x_i = a + i \Delta x =$$

$$\lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i) \Delta x =$$

Application Note

Velocity/Distance & Riemann Sums

When velocity is a **constant**:

$$\text{Distance} = \text{Velocity} \cdot \text{Time}$$

Example:

You are accelerating in a car. You get the following measurements:

t (sec)	0	0.5	1.0	1.5	2.0
v(t) (ft/s)	0	6.2	10.8	14.9	18.1

Estimate the distance traveled by the car traveled from 0 to 2 seconds. *Same idea!*

	Low Estimate	High Estimate
0 to 0.5	$0 \frac{ft}{s} \cdot 0.5 \text{ s} = 0 \text{ ft}$	$6.2 \frac{ft}{s} \cdot 0.5 \text{ s} = 3.1 \text{ ft}$
0.5 to 1.0	$6.2 \frac{ft}{s} \cdot 0.5 \text{ s} = 3.1 \text{ ft}$	$10.8 \frac{ft}{s} \cdot 0.5 \text{ s} = 5.4 \text{ ft}$
1.0 to 1.5	$10.8 \frac{ft}{s} \cdot 0.5 \text{ s} = 5.4 \text{ ft}$	$14.9 \frac{ft}{s} \cdot 0.5 \text{ s} = 7.45 \text{ ft}$
1.5 to 2.0	$14.9 \frac{ft}{s} \cdot 0.5 \text{ s} = 7.45 \text{ ft}$	$18.1 \frac{ft}{s} \cdot 0.5 \text{ s} = 9.05 \text{ ft}$
Total	15.95 ft	25 ft

All we are doing is multiplying and adding. The **units** of

$$\sum_{i=1}^n f(x_i) \Delta x$$

will be **units of f(x) times units of x.**

5.2 The Definite Integral

Def'n:

We define the **definite integral of $f(x)$ from $x = a$ to $x = b$** by

$$\int_a^b f(x)dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i)\Delta x,$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

Basic Integral Rules:

$$1. \int_a^b c \, dx = (b - a)c$$

$$2. \int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$$

Examples:

$$1. \int_4^{10} 5 \, dx =$$

$$2. \int_0^3 x^2 dx + \int_3^7 x^2 dx =$$

Basic Integral Rules (continued):

$$3. \int_a^b cf(x) dx = c \int_a^b f(x) dx$$

and

$$\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

$$4. \int_b^a f(x) dx = - \int_a^b f(x) dx$$

Examples:

$$3. \int_0^4 5x + 3 dx =$$

$$4. \int_3^1 x^3 dx = - \int_1^3 x^3 dx$$

Note on quick estimates (HW 5.2: 10,11)

$$m(b - a) \leq \int_a^b f(x)dx \leq M(b - a)$$

Example: Consider the area under

$$f(x) = \sin(x) + 2$$

on the interval $x = 0$ to $x = 2\pi$.

- (a) What is the max of $f(x)$? (label M)
- (b) What is the min of $f(x)$? (label m)
- (c) Draw **one** rectangle that completely contains all the shaded area?
- (d) Draw **one** rectangle that is completely inside the shaded area?
What can you conclude?

