

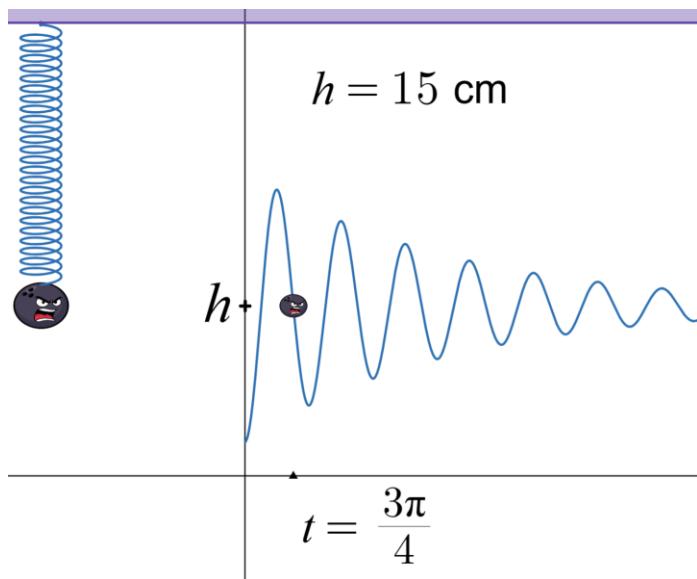
Entry Task: Derivative Warm-Up

Assume

$$h(t) = 15 - 12e^{-0.1t} \cos(2t)$$

gives the height in *cm* of a bowling ball on the end of an oscillating spring after t seconds.

What is the velocity at $t = \frac{3\pi}{4}$?



Animation: <https://www.desmos.com/calculator/zsram9rvhb>

4.9 Antiderivatives

Def'n: If $g(x) = f'(x)$, then we say

$g(x)$ = “the derivative of $f(x)$ ”, and

$f(x)$ = “an antiderivative of $g(x)$ ”

Example:

Give an antiderivative of

$$g(x) = x^2.$$

Examples (you do):

Find the general antiderivative of

$$1. \ f(x) = x^6 + \sqrt{x}$$

$$2. \ g(x) = \cos(x) + \frac{1}{x} + e^x + \frac{1}{1+x^2}$$

$$3. \ h(x) = \frac{x-3x^2}{x^3}$$

Initial Conditions

There is no way to know what “C” is without additional information. Such information is called an **initial condition**.

Example: $f'(x) = e^x + 4x$ and
 $f(0) = 5$

Find $f(x)$.

Example: $f''(x) = 15\sqrt{x}$, and

$$f(1) = 0, f(4) = 1$$

Find $f(x)$.

Example: Assume I stand next to statue and throw a ball straight up. Assume that gravity provides a constant downward acceleration of 32 ft/s^2 .

Let $f(t)$ denote the height of the ball (in feet) above my hand at t seconds after it is thrown.

The ball leaves my hand at $t = 0$, reaches the top of the statue, and returns to my hand at $t = 3$ seconds.

Use calculus to determine the height the statue above my hand.

A Tennis Ball to measure Statue Heights

George Washington Statue:
00:02.83

$$(2 \cdot 2.83)^2 \\ \approx 32.04 \text{ ft}$$

Bowling Pin Statue:
00:01.96

$$(2 \cdot 1.96)^2 \\ \approx 15.37 \text{ ft}$$

Columns
00:02.43

$$(2 \cdot 2.43)^2 \\ \approx 23.62 \text{ ft}$$

Video of me measuring statue heights:

<https://www.youtube.com/watch?v=07TDV5SgJT4>

Preview of next class

5.1 Defining Area

Calculus is based on limiting processes
“approaching” the
exact answer to a rate question.

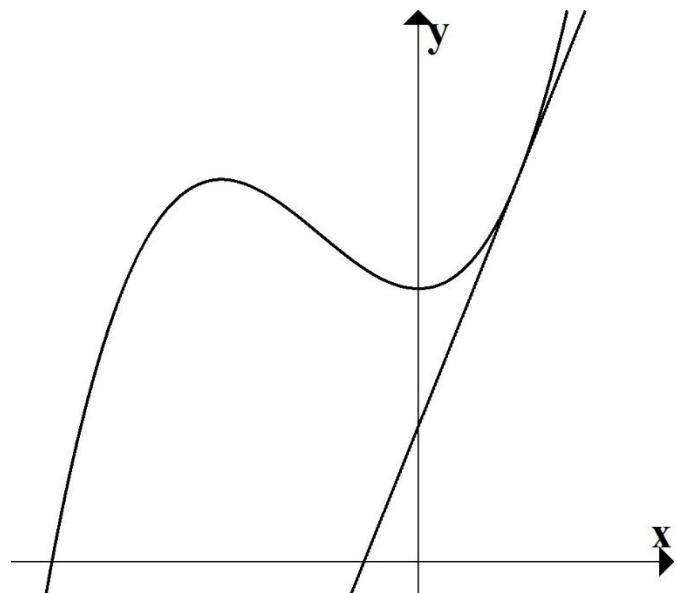
In Calculus I, you defined

$$\begin{aligned} f'(x) &= \text{`slope of the tangent at } x' \\ &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \end{aligned}$$

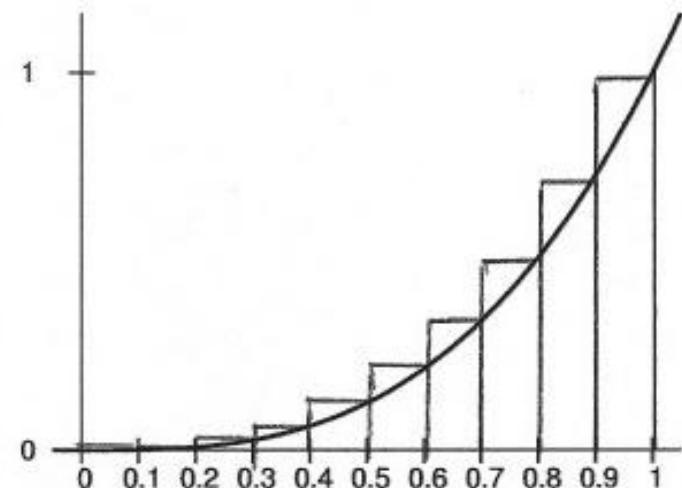
In Calculus II, we will see that
antiderivatives are related
to the area ‘under’ a graph

$$= \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

Calc. I
Visual:



Calc. II
Visual:



$$R_{10} = 0.3025$$

Riemann sums set up:

A procedure to get approximations of the area “under” $f(x)$.

1. Break into n subintervals.

$$\Delta x = \frac{b-a}{n} \text{ and } x_i = a + i\Delta x$$

2. Draw n rectangles.

Area of each rectangle =

$$(\text{height})(\text{width}) = f(x_i^*)\Delta x$$

3. Add up rectangle areas.