1. (14 pts) Evaluate the integrals. In part (c}, appropriately Change bounds and simplify your final
answer.
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2. (12 pts)
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(b) A table of values for an increasing function f are given:. fEE:E) i’ '335 é61 455 152 51§ 260

i. Approximate the value of ] f{z) dz using left-endpoints with n = 4 subdivisions
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ii. Let g(x) =

3
That is, compute ¢'(2).
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f(t)dt. Find the value of the derivative of g{z) at z = 2
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3. (14 pts)

(a) Let R be the region bounded by y = #®, x = 2 and the z-axis. Set up (DO NOT EVALUATE)
integrals that represent the volumes of the solids obtained by rotating R about the given axis:

i. ... about the y-axis (any method): 2 -1—
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ii. ... about the horizontal line y = —2, using dz: '\\\
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iii. ... about the horizontal line y = -2, using dy: -
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(b) Compute the area of the region bounded by ¥ + z —~ 2 =0 and z = 3.
(Note: This is a new region, unrelated to the previous question).
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4. (10 pts) The acceleration function (in m/s?) and the initial velocity, v(0), of a certain particle
moving along a line are given by: a(t) = 2t + 6 and v(0) = —7.

Find the total distance traveled by the particle from ¢ = 0 to ¢ = 2 seconds
(Hint: First find the velocity function!)
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5. (10 pts) At time ¢ = 0 seconds a small water balloon is dropped from the top of a building (so
v(0) = 0 ft/sec). Dr. Loveless looks up and observes the following:

e At some time, ¢ = a seconds, the balloon passes a window that is 112 feet high.

¢ One second later, t = a + 1 seconds, the balloon hits the ground at his feet.

Assume the balloon fell toward the ground at a constant acceleration of -32 ft/sec?.
How tall is the building?
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