1. (14 pts) Evaluate the integrals. In part (c), appropriately change bounds and simplify your final answer.

(a)
$$\int 7 - e^{-6x} + \frac{5}{2\sqrt[3]{x}} dx = \int 7 - e^{-6x} + \frac{5}{2} \times \sqrt{3} dx$$

$$= 7 \times + \frac{1}{6} e^{-6x} + \frac{5}{2} \frac{3}{2} \times \sqrt{3} + C$$

$$= \left[7 \times + \frac{1}{6} e^{-6x} + \frac{15}{4} \times \sqrt{3} + C\right]$$

(b)
$$\int \frac{\sin(2x)}{\cos(2x) + 3} dx$$

$$= \int \frac{\sin(2x)}{\cos(2x) + 3} dx$$

(c)
$$\int_{0}^{1} \frac{\sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)}}{(1 + x^{2})} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$= \frac{1}{12} \frac{2}{3} \sqrt{3} \sqrt{1 + \frac{12}{\pi} \tan^{-1}(x)} dx$$

$$U = 1 + \frac{12}{17} tan^{-1}(x)$$

$$du = \frac{12}{17} \frac{1}{x^2+1} dx$$

$$\frac{\pi}{17} (x^2+1) du = dx$$

$$x = 0 \Rightarrow u = 1 + \frac{12}{17} tan^{-1}(0) = 1$$

$$x = 1 \Rightarrow u = 1 + \frac{12}{17} tan^{-1}(1)$$

$$= 1 + \frac{12}{17} \frac{\pi}{4} = 1 + 3 = 4$$

(a) Evaluate:
$$\int_{0}^{1} \frac{x^{7}}{(1+x^{4})^{2}} dx$$

$$= \int_{1}^{2} \frac{x^{7}}{u^{2}} \frac{1}{4x^{2}} du$$

$$= \int_{1}^{2} \frac{u-1}{u^{2}} du$$

$$= \frac{1}{4} \int_{1}^{2} \frac{u-1}{u^{2}} du$$

$$= \frac{1}{4} \left(\ln |u| + \frac{1}{u} \right)^{2} \right)$$

$$= \frac{1}{4} \left(\ln |u| + \frac{1}{2} \right) - \left(\ln (1) + 1 \right) \right]$$

$$= \frac{1}{4} \left(\ln (2) - \frac{1}{2} \right) = \frac{1}{4} \ln (2) - \frac{1}{8}$$

(b) A table of values for an increasing function f are given: $\begin{vmatrix} x & 3 & 3.5 & 4 & 4.5 & 5 & 5.5 & 6 \\ \hline f(x) & 1 & 3 & 6 & 9 & 12 & 15 & 20 \\ \end{vmatrix}$

i. Approximate the value of $\int_3^5 f(x) dx$ using left-endpoints with n = 4 subdivisions. $\triangle \times = \frac{5-3}{4} = \frac{1}{2} \times (5-3) \times (5-$

$$(1)(\frac{1}{2}) + (3)(\frac{1}{2}) + (6)(\frac{1}{2}) + (9)(\frac{1}{2}) = (1+3+6+9)\frac{1}{2}$$

$$= \frac{19}{2} = 9.5$$

ii. Let $g(x) = \int_3^{x^2+x} f(t) dt$. Find the value of the derivative of g(x) at x = 2. That is, compute g'(2).

$$g'(x) = f(x^{2}+x)(2x+1)$$

$$\Rightarrow g'(2) = f(2)^{2}+(2+2)(2(2)+1) = f(4) \cdot 5$$

$$= 20 \cdot 5 = \boxed{00}$$

3. (14 pts)

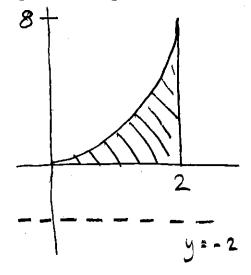
- (a) Let R be the region bounded by $y = x^3$, x = 2 and the x-axis. Set up (DO NOT EVALUATE) integrals that represent the volumes of the solids obtained by rotating R about the given axis:
 - i. ... about the y-axis (any method):

$$\int_{0}^{2} 2\pi \times x^{3} dx = \int_{0}^{8} \pi (2)^{2} - \pi (y^{1/3})^{2} dy$$
BOTH CORNECT > NALUE = 64 \(\pi/5\)

ii. ... about the **horizontal** line y = -2, using dx:

$$\int_{0}^{2} \pi (x^{2}+2)^{2} - \pi (2)^{2} dx$$

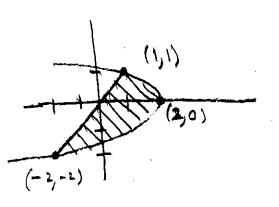
iii. ... about the **horizontal** line y = -2, using dy:



(b) Compute the area of the region bounded by $y^2 + x - 2 = 0$ and x = y. (Note: This is a new region, unrelated to the previous question).

INTERSECTIONS
$$y^2+y-2=0 \Rightarrow (y+2)(y-1)=0 \Rightarrow y=-2 \text{ on } y=1$$

 $y^2+x-2=0 \Rightarrow x=2-y^2$
 $= 2y-\frac{1}{3}y^3-\frac{1}{2}y^2-\frac{1}{2}$
 $= (2-\frac{1}{3}-\frac{1}{2})-(-4+\frac{8}{3}-2)$
 $= (2-\frac{1}{3}-\frac{1}{2})-(-4+\frac{8}{3}-2)$
 $= (2-\frac{1}{3}-\frac{1}{2})=5-\frac{1}{2}=\frac{q}{2}=4.5$



ALSO COULD DO
$$\int_{-2}^{1} x - (-\sqrt{2-x}) dx \leftarrow \frac{19}{6}$$
 $\frac{9}{2}$ $+ \int_{1}^{2} \sqrt{2-x} - (-\sqrt{2-x}) dx \leftarrow \frac{45}{3}$

4. (10 pts) The acceleration function (in m/s²) and the initial velocity, v(0), of a certain particle moving along a line are given by: a(t) = 2t + 6 and v(0) = -7.

Find the total distance traveled by the particle from t=0 to t=2 seconds.

(Hint: First find the velocity function!)

$$a(t) = 2t + 6$$

$$V(0) = -7 \Rightarrow (0)^2 + 6(0) + C = -7 \Rightarrow C = -7$$

$$0 + 2^{2} + 6 + - 7 = 0 \Rightarrow (+ + 7)(+ - 1) = 0$$

$$+ = -7 \text{ on } + = 1$$

$$\int_{1}^{2} t^{2} + 6t - 7 dt = \frac{1}{5}t^{3} + 3t^{2} - 7t \Big|_{1}^{2}$$

$$= (\frac{6}{5} + 12 - 14) - (-\frac{1}{5})$$

$$= \frac{19}{5} - 2 = \frac{13}{5}$$

- 5. (10 pts) At time t = 0 seconds a small water balloon is **dropped** from the top of a building (so v(0) = 0 ft/sec). Dr. Loveless looks up and observes the following:
 - At some time, t = a seconds, the balloon passes a window that is 112 feet high.
 - One second later, t = a + 1 seconds, the balloon hits the ground at his feet.

Assume the balloon fell toward the ground at a constant acceleration of -32 ft/sec². How tall is the building?

$$(9(t) = -32$$

$$V(t) = -32t + C$$

$$V(0) = 0 \implies C = 0$$

$$V(t) = -32t$$

$$h(t) = -|6t^{2} + D|$$

$$h(a) = |1|2 \implies -|6a^{2} + D| = |1|2$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| = 0$$

$$h(a+1) = 0 \implies -|6(a+1)^{2} + D| =$$