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(a) (4 pts) Given f(z) = (sinz(x) + 6(5’4)>10, find f'(x).
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(¢) (6 pts) Find the equation of the tangent line to y* + ysin(z) = cos(z) at the point on the
curve where x = 0.
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2. (7 pts) Use the linear approximation to f(z) = tan~!(2z) 4+ In(8z%) at z = 3 to estimate the value
of £(0.51). (Leave in exact form).
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3. (¥pts) Consider the curve implicitly defined by (:1:3 — yz) + e¥ = 4 (shown below).
Find the (z,y) coordinates of the point A shown which is the highest point on the curve.
(Hint: At this point, there is a horizontal tangent line.).
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(12 pts) For BOTH parts below, consider the parametric curve shown which is defined by

z(t)=t3—4t , y(t)=2In(*+1) -1

The tangent line is vertical at the point B shown in the graph. Find the y-coordinate of the

4 kg (a)
QU point B. (Leave in exact form) >
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(b) The curve has one positive y-intercept which it crosses through twice. Find the equation of
the tangent line that has negative slope at the positive y-intercept (as shown in the picture)
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5. (8 pts) An inverted cone starts full of water. The height of the cone is 6 ft and the radius is 4 ft.
Water leaks out of the bottom at a constant rate of 1 ft>/min. When the radius is 2 ft, find the

rate at which the radius is changing. Y oM
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(Recall: The volume of a cone is V = 3
e S = -1 B —

J:E - i A

(PNTsY A”.,') [ o =
?
,,_,‘:: aa——— p— \ 1
- “ :
\ 2 % = __\_, >
N = 2Ttk :*j\‘(r“’(s:;f‘w aiNa



6. (12 pts)
Two carts, A and B, are connected by a rope 15 ft
long that passes over a pulley P (see the figure). The
point ) is on the floor 4 ft beneath P and between
the carts. Cart A is being pulled away from @) at a
constant speed of 2 ft/s.
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< 4y (a) Let 0 be the angle that the rope makes with the ground where it meets cart A (as shown in

> the picture). Find the rate at which 6 is changing at the instant when cart A is 3 ft from Q.
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&3\\“‘& s (b) How fast is cart B moving toward @ at the instant when cart A is 3 ft from Q?
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