1. (12 pts) Compute the derivatives of the following functions. You do not have to simplify your
final answer.
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(c) f(e) =tan™" (VB2 +5°)
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2. (16 pts) The two parts below are independent of each other.
(a) (8 pts) Find the equation for the tangent line to y = (3z +1)V® at z = 1.
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(b) (8 pts) Find all values of ¢ at which the parametric curve x = 3t*, y = 15t — 3In(t) has a

tangent line with slope 2.
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3. (9 pts) Consider the curve implicitly defined by 4y® + z®sin(ry) — 2® = 0. There is one point on
the curve that has a y-coordinate of y = 1 and a negative z-coordinate. Find the equationy, for

the tangent line to the curve at this point.
(Give your numbers simplified in exact form).
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4. (12 pts) Larry Bernandez throws a baseball whose location (viewed from the side) is given by the

equations:
z(t) = 80t , y(t) = —16¢> + 8t + 6,

where t is in seconds since it was thrown and distances are in feet.

(a) (5 pts) Find the coordinates of the ball at the instance when its vertical velocity is zero.
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(b) (7 pts) Recall, the speed is given by \/ (2'(t))? + (y'(t))? ft/sec. Find the speed of the ball and
the equation of the tangent line at the instant when the ball reaches the point (z,y) = (60, 3).
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_2Balloon
5. (11 pts)

At time ¢ = 0 seconds, a balloon is released from the ground 2

from a point P which is 332 feet away from you. You are

walking toward the point P at the constant rate of 4 feet per (2"'

second and the balloon is rises vertically at the constant rate
of 50 feet per second. \9
You x P

(a) (6 pts) At what rate is the straight line distance between you and the balloon changing when

the balloon is exactly 400 feet high? (Hint: Note it takes ¢ = 8 seconds for the balloon to

t to 400 feet high.
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(b) (5 pts) Let 6 be the angle of inclination between your line of sight to the balloon and the
ground (see picture). At what rate is § changing when the balloon is exactly 400 feet high?
(Give in units of rad/sec).
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