1.

(a) (6 pts) Find the equation for the tangent line to the curve y = \/ esin(@) + In(5z + 1) + 1 at
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(b) (6 pts) At z = 0.3 there is only one corresponding y value on the curve implicitly defined by
5 2
Y —z=yz*+ 1.

Use the tangent line approximation at the point (0,1) to estimate the value of y that corre-
sponds to z = 0.3 on this curve.
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2. (a) (5 pts) Let f(z) be a function such that it’s derivative satisfies 2 < f'(z) < 5 for all real

values of z. Assuming f(0) = 1 and = is positive, by correctly stating and using the mean

value theorem on the interval [0, z] give an upper and lower bound on f(z).
(Note: Your bounds will be in terms of z).
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(b) (8 pts) Find and classify all critical numbers for f(z) = tan~!(z?) — 1 In(z* + 1).
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3. (a) (6 pts) Consider the function f(z) =

P Ty where a and b are positive constants. Find
general conditions on a and b under which f(z) will have two (real) critical numbers and find
these two critical numbers. ®
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(b) (7 pts) Find the absolute max and min values of f(z) = z(~/%") on the interval [3,2]
b /- = N
A S

N CR A
y =X

¥ .
5 (2uo -1y =0

on C:L/ D

T
W=k = (x=e

P =@ -

L

ARS, Max

F( y\> (¢> Er» 0,8219454€19 — AL M
-

FOY) = 2

= 0.6408404153




4. At time ¢ = 0 min, you start pumping milk into a cone fEEEEI at a constant rate of 0.4 ft3 /min.
The bottom point of the cone is dripping, so that the cone is also losing volume at a constant,
but unknown, rate, of ¢ ft®/min. The cone is 8 feet high with a radius of 2 feet at the top.
Recall: The volume of a cone is V = 1rr2h.

(a) (7 pts) At some particular time you measure the height of the milk in the cone to be 2 feet
with the height increasing at a rate of % ft/min. Find the rate, ¢, at which the milk is dripping

out of the funnel. C\ L . g H;/mi,\
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(b) (4 pts) The milk drips from the funnel into a cylindrical bucket at the constant rate you
found in part (a). The cylindrical bucket is 2 feet high and has a radius of 1 /2 foot. At what
time, ¢, will the bucket be full?

(This is when you plan to dump the bucket of milk on Dr. Loveless’ head).
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5. Since you know that Dr. Loveless has motion sickness, you and some classmates tie him to the
edge of a merry-go-round xpich happens to be on a moving train. The merry-go-round has radius

of 4 feet and is rotating at a constant rate of 5 revolutions per hour. At time ¢ = 0, Dr. Loveless
is on the northernmost edge of the merry-go-round.

The train moves at a constant speed in such a way that the center of the merry-go-round is at
the origin at time ¢ = 0 and at the point (4000, 6000) at time ¢ = 3 hours.
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The model for this motion is )

z(t) = at + 4 cos (6 + wt)
y(t) = bt + 4sin (6 + wt) &
(a) (4 pts) Find the constants 6y, w, a, and b. {
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(b) (7 pts) At ¢ = 4.5 hours, Dr. Loveless comes untied and falls off the merry-go-round. Find
the equation for the tangent line path he follows at ¢ = 4.5 hours.
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