\qquad
\qquad
\qquad

Math 124

Midterm I
October 25, 2011

Problem 1	12	
Problem 2	6	
Problem 3	4	
Problem 4	15	
Problem 5	7	
Problem 6	6	
Total:	$\mathbf{5 0}$	

- Besides this cover page, your exam should contain 6 problems on 5 additional pages. Check that you have a complete exam!
- Unless otherwise instructed, show all your work, and use the methods learned in this class. Answers with no supporting work, or obtained by guess-and-check, will result in little or no credit, even if correct.
- Indicate your final answer by placing a box around it.
- Give your answers in exact form (ex: $1 / 3$, not 0.33)
- If you need more room, use the backs of pages, but indicate to the grader that you have done so.
- Raise your hand if you have any questions.

GOOD LUCK!

1 (12 pts) Determine the values of the following limits, or state that the limit does not exist. If it is correct to say that the limit is $+\infty$ or $-\infty$, then you should say so. Show your work. There will be little credit for answers without justification, or obtained by entering values in a calculator.
a) $\lim _{x \rightarrow \infty}\left(\frac{\sqrt{x^{2}-4 x}}{3 x-12}\right)=$
b) $\lim _{x \rightarrow \pi^{-}}(\ln (\sin (x))=$
c) $\lim _{t \rightarrow 3}\left(\frac{t-\sqrt{t+6}}{t-3}\right)=$

2 (6 pts) Compute the slope of the tangent line to $y=\frac{1}{\sqrt[3]{x}}+\frac{2 x+7}{x}$ at the point $(1,10)$

3 (4 pts) The graph on the right is the graph of a function f.

Which one of the following 4 graphs could be the graph of its derivative?

Graph of f^{\prime} is : \qquad (no need to justify)

4 (15 pts) Consider the function:

$$
f(x)=\left\{\begin{array}{cc}
2 x+3 & \text { if } x \leq 0 \\
\frac{4}{x+1} & \text { if } 0<x \leq 1 \\
2 \sqrt{x} & \text { if } 1<x
\end{array}\right.
$$

a) (4 pts) Compute the following four limits of this function:

$$
\begin{array}{ll}
\lim _{x \rightarrow 0^{-}} f(x)= & \lim _{x \rightarrow 1^{-}} f(x)= \\
\lim _{x \rightarrow 0^{+}} f(x)= & \lim _{x \rightarrow 1^{+}} f(x)=
\end{array}
$$

b) (3 pts) List all the points where this function f is discontinuous. For each point of discontinuity, specify the type: removable, jump or infinite.
c) (5 pts) Compute the derivative of f. Write it in bracket notation as above, with correct domain for each part.
d) (3 pts) List all real numbers where f is not differentiable and justify why (discontinuity, corner, or vertical tangent)

5 (7 pts) An object moves in the xy-plane. Its coordinates at time t seconds are given by the parametric equations:

$$
\begin{aligned}
& x(t)=t \cos (t) \\
& y(t)=t \sin (t)
\end{aligned}
$$

Both coordinates are measured in inches, and the time is measured in seconds.
a) Compute the horizontal velocity of this object at time 0 seconds. (Recall that the horizontal velocity is the instant rate of change of the x-coordinate) Include correct units in your answer.
b) Write a formula in terms of t for the distance $d(t)$ between the origin $(0,0)$ and the position of this object at t seconds. Simplify your formula.

6 (6 points) Determine the equation of the tangent line to the graph of $y=x^{2}-x$, which passes through the point $(0,-1)$ and whose point of tangency P is in the second quadrant. See the picture below.

